GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-20
    Description: No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ11B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (∼0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from –0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to –0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (7). pp. 1155-1172.
    Publication Date: 2020-02-06
    Description: Numerical Earth System Models are generic tools used to extrapolate present climate conditions into a warming future and to explore geoengineering options. Most of the current-generation models feature a simple pelagic biogeochemical model component that is embedded into a three-dimensional ocean general circulation model. The dynamics of these biogeochemical model components is essentially controlled by so-called model parameters most of which are poorly known. Here we explore the feasibility to estimate these parameters in a full-fledged three-dimensional Earth System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability. Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters that prescribe the limiting effect of nutrient- and light-depleted conditions on carbon assimilation by autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they propose strikingly differing projections into a warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-11
    Description: Based on the results of a numerical ocean model, we investigate statistical correlations between wind forcing, surface salinity and freshwater transport out of the Baltic Sea on one hand, and Norwegian coastal current freshwater transport on the other hand. These correlations can be explained in terms of physics and reveal how the two freshwater transports are linked with wind forcing, although this information proves to be non-sufficient when it comes to the dynamics of the Norwegian coastal current. Based on statistical correlations, the Baltic Sea freshwater transport signal is reconstructed and shows a good correlation but a poor variability when compared with the measured signal, at least when data filtered on a two-daily time scale is used. A better variability coherence is reached when data filtered on a weekly or monthly time scale is used. In the latest case, a high degree of precision is reached for the reconstructed signal. Using the same kind of methods for the case of the Norwegian coastal current, the negative peaks of the freshwater transport signal can be reconstructed based on wind data only, but the positive peaks are under-represented although some of them exist mostly because the meridional wind forcing along the Norwegian coast is taken into account. Adding Norwegian coastal salinity data helps improving the reconstruction of the positive peaks, but a major improvement is reached when adding non-linear terms in the statistical reconstruction. All coefficients used to re-construct both freshwater transport signals are provided for use in European Shelf or climate modeling configurations. Highlights : • We model the thermo-haline circulation of the Baltic and North Sea. • We compute statistical correlations between different diagnostics. • We rebuild transports for the Baltic Sea outflow and the Norwegian current. • We use a physical analysis to improve the results of the statistical reconstruction. • We provide coefficients for use in NW European shelf configurations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 489 . pp. 1-16.
    Publication Date: 2019-09-24
    Description: The notion that excess phosphorus (P) and high irradiance favour pelagic diazotrophy is difficult to reconcile with diazotroph behaviour in laboratory experiments and also with the observed distribution of N2-fixing Trichodesmium, e.g. in the relatively nitrogen (N)-rich North Atlantic Ocean. Nevertheless, this view currently provides the state-of-the-art framework to understand both past dynamics and future evolution of the oceanic fixed N inventory. In an attempt to provide a consistent theoretical underpinning for marine autotrophic N2 fixation we derive controls of diazotrophy from an optimality-based model that accounts for phytoplankton growth and N2 fixation. Our approach differs from existing work in that conditions favourable for diazotrophy are not prescribed but emerge, indirectly, from trade-offs among energy and cellular resource requirements for the acquisition of P, N, and carbon. Our model reproduces laboratory data for a range of ordinary phytoplankton species and Trichodesmium. The model predicts that (1) the optimal strategy for facultative diazotrophy is switching between N2 fixation and using dissolved inorganic nitrogen (DIN) at a threshold DIN concentration; (2) oligotrophy, especially in P and under high light, favours diazotrophy; (3) diazotrophy is compatible with DIN:DIP supply ratios well above Redfield proportions; and (4) communities of diazotrophs competing with ordinary phytoplankton decouple emerging ambient and supply DIN:DIP ratios. Our model predictions appear in line with major observed patterns of diazotrophy in the ocean. The predicted importance of oligotrophy in P extends the present view of N2 fixation beyond a simple control by excess P in the surface ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: In a changing climate, marine pelagic biogeochemistry may modulate the atmospheric concentrations of climate-relevant species such as CO2 and N2O. To date, projections rely on earth system models, featuring simple pelagic biogeochemical model components, embedded into 3-D ocean circulation models. Most of these biogeochemical model components rely on the hyperbolic Michaelis–Menten (MM) formulation which specifies the limiting effect of light and nutrients on carbon assimilation by autotrophic phytoplankton. The respective MM constants, along with other model parameters, of 3-D coupled biogeochemical ocean-circulation models are usually tuned; the parameters are changed until a "reasonable" similarity to observed standing stocks is achieved. Here, we explore with twin experiments (or synthetic "observations") the demands on observations that allow for a more objective estimation of model parameters. We start with parameter retrieval experiments based on "perfect" (synthetic) observations which we distort, step by step, by low-frequency noise to approach realistic conditions. Finally, we confirm our findings with real-world observations. In summary, we find that MM constants are especially hard to constrain because even modest noise (10 %) inherent to observations may hinder the parameter retrieval already. This is of concern since the MM parameters are key to the model's sensitivity to anticipated changes in the external conditions. Furthermore, we illustrate problems caused by high-order parameter dependencies when parameter estimation is based on sparse observations of standing stocks. Somewhat counter to intuition, we find that more observational data can sometimes degrade the ability to constrain certain parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (11). pp. 4482-4489.
    Publication Date: 2020-06-29
    Description: Growing slowly, marine N2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of non-fixing phytoplankton. This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1). In this study, we investigate several mechanisms to solve this puzzle: iron limitation, phosphorus enhancement by preferential remineralization or stoichiometric diversity of phytoplankton, and dissolved organic phosphorus (DOP) utilization. Combining resource competition theory and a global coupled ecosystem-circulation model we find that the additional N and energy investments required for exo-enzymatic break-down of DOP gives N2 fixers a competitive advantage in oligotrophic P-starved regions. Accounting for this mechanism expands the ecological niche of N2-fixers also to regions where the nutrient supply is high in N relative to R, yielding, in our model, a pattern consistent with the observed high N2-fixation rates in the oligotrophic North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 10 . pp. 1351-1363.
    Publication Date: 2019-09-23
    Description: The marine nitrogen (N) inventory is controlled by the interplay of nitrogen loss processes, here referred to as denitrification, and nitrogen source processes, primarily nitrogen fixation. The apparent stability of the marine N inventory on time scales longer than the estimated N residence time, suggests some intimate balance between N sinks and sources. Such a balance may be perceived easier to achieve when N sinks and sources occur in close spatial proximity, and some studies have interpreted observational evidence for such a proximity as indication for a stabilizing feedback processes. Using a biogeochemical ocean circulation model, we here show instead that a close spatial association of N2 fixation and denitrification can, in fact, trigger destabilizing feedbacks on the N inventory and, because of stoichiometric constrains, lead to net N losses. Contrary to current notion, a balanced N inventory requires a regional separation of N sources and sinks. This can be brought about by factors that reduce the growth of diazotrophs, such as iron, or by factors that affect the fate of the fixed nitrogen remineralization, such as dissolved organic matter dynamics. In light of our findings we suggest that spatial arrangements of N sinks and sources have to be accounted for in addition to individual rate estimates for reconstructing past, evaluating present and predicting future marine N inventory imbalances.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: Baltic Sea Science Congress 2013, 26.-30-08.2013, Klaipeda, Lithuania .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: CARBOCHANGE Final Project Meeting 2015, 19.-22.01.2015, Bergen, Norway .
    Publication Date: 2015-02-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: ASLO Aquatic Sciences Meeting 2015, 22.-27.02.2015, Granada, Spain .
    Publication Date: 2019-09-23
    Description: Nitrogen fixation is essential for maintaining the marine fixed nitrogen (N) inventory which regulates ocean productivity. Still, environmental controls of marine N2 fixation are not well understood. Growing slowly, N2 fixers are expected to be competitive only where N supply is low relative to phosphorus (P) with respect to the cellular N:P ratio of non-fixing phytoplankton (R). This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the surface nutrient supply is elevated in N relative to P. Using resource competition theory and a global coupled ecosystem-circulation model, we show that the ability of N2 fixers to invest additional N into the exo-enzymatic break-down of dissolved organic phosphorus (DOP) gives them a competitive advantage in oligotrophic regions of low P supply. Accounting for this mechanism expands the modeled ecological niche of marine N2 fixers and explains the observed pattern of N2 fixation in the oligotrophic North Atlantic.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...