GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Invasive alien species (IAS) cause myriad negative impacts, such as ecosystem disruption, human, animal and plant health issues, economic damage and species extinctions. There are many sources of emerging and future IAS, such as the poorly regulated international pet trade. However, we lack methodologies to predict the likely ecological impacts and invasion risks of such IAS which have little or no informative invasion history. This study develops the Relative Impact Potential (RIP) metric, a new measure of ecological impact that incorporates per capita functional responses (FRs) and proxies for numerical responses (NRs) associated with emerging invaders. Further, as propagule pressure is a determinant of invasion risk, we combine the new measure of Pet Propagule Pressure (PPP) with RIP to arrive at a second novel metric, Relative Invasion Risk (RIR). We present methods to calculate these metrics and to display the outputs on intuitive bi- and triplots. We apply RIP/RIR to assess the potential ecological impacts and invasion risks of four commonly traded pet turtles that represent emerging IAS: Trachemys scripta scripta, the yellow-bellied slider; T. s. troostii, the Cumberland slider; Sternotherus odoratus, the common musk turtle; and Kinosternon subrubrum, the Eastern mud turtle. The high maximum feeding rate and high attack rate of T. s. scripta, combined with its numerical response proxies of lifespan and fecundity, gave it the highest impact potential. It was also the second most readily available according to our UK surveys, indicating a high invasion risk. Despite having the lowest maximum feeding rate and attack rate, S. odoratus has a high invasion risk due to high availability and we highlight this species as requiring monitoring. The RIP/RIR metrics offer two universally applicable methods to assess potential impacts and risks associated with emerging and future invaders in the pet trade and other sources of future IAS. These metrics highlight T. s. scripta as having high impact and invasion risk, corroborating its position on the EU list of 49 IAS of Union Concern. This suggests our methodology and metrics have great potential to direct future IAS policy decisions and management. This, however, relies on collation and generation of new data on alien species functional responses, numerical responses and their proxies, and imaginative measures of propagule pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Environmental concerns and insecticide resistance threaten the sustained efficacy of mosquito control approaches which remain reliant on synthetic chemicals. Plant-based extracts may be an environmentally sustainable and effective alternative to contemporary mosquito control approaches; however, the efficacies of many possible plant-based extracts remain untested. The present study examines the effects of extracts from three floating and three submerged aquatic plants on larval mosquito Culex pipiens mortality, and development to pupal and adult stages. Physical impacts of floating plant species on mosquito mortality and development are also examined. Extracts of Lagarosiphon major and Lemna minuta were toxic, causing significantly increased mosquito mortality compared to plant-free controls. Effects of Azolla filiculoides, Crassula helmsii, Elodea canadensis and Lemna minor were statistically unclear, yet in some cases tended to increase pupal and larval numbers at high extract concentrations. Surface coverage of all floating Lemna species drove significant mosquito mortality through mechanical processes which likely impeded surface respiration by larval mosquitoes. In particular, high-density mats of L. minuta consistently caused total larval mortality. The present study thus suggests that targeted use of specific aquatic plants could assist in mosquito control protocols. However, as the chemical composition of botanic material will differ across spatial and temporal gradients, even for a singular species, localised assessment of the efficacy of plant-based extracts from within areas experiencing problematic mosquito control is required. The application of aquatic plants that are both toxic to larvae and are effective physical control agents presents an economic and effective method of mosquito control.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Invasive alien species continue to arrive in new locations with no abatement in rate, and thus greater predictive powers surrounding their ecological impacts are required. In particular, we need improved means of quantifying the ecological impacts of new invasive species under different contexts. Here, we develop a suite of metrics based upon the novel Relative Impact Potential (RIP) metric, combining the functional response (consumer per capita effect), with proxies for the numerical response (consumer population response), providing quantification of invasive species ecological impact. These metrics are comparative in relation to the eco-evolutionary baseline of trophically analogous natives, as well as other invasive species and across multiple populations. Crucially, the metrics also reveal how impacts of invasive species change under abiotic and biotic contexts. While studies focused solely on functional responses have been successful in predictive invasion ecology, RIP retains these advantages while adding vital other predictive elements, principally consumer abundance. RIP can also be combined with propagule pressure to quantify overall invasion risk. By highlighting functional response and numerical response proxies, we outline a user-friendly method for assessing the impacts of invaders of all trophic levels and taxonomic groups. We apply the metric to impact assessment in the face of climate change by taking account of both changing predator consumption rates and prey reproduction rates. We proceed to outline the application of RIP to assess biotic resistance against incoming invasive species, the effect of evolution on invasive species impacts, application to interspecific competition, changing spatio-temporal patterns of invasion, and how RIP can inform biological control. We propose that RIP provides scientists and practitioners with a user-friendly, customisable and, crucially, powerful technique to inform invasive species policy and management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra‐ and interspecific variation in predator–prey body size ratios are lacking. We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra‐ and interspecific predator–prey body mass ratios on the scaling of attack rates and handling times. Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium–large prey types. Attack rates for both predators peaked unimodally at intermediate predator–prey body mass ratios, while handling times generally shortened across increasing body mass ratios. We thus demonstrate effects of body size ratios on predator–prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator–prey participants. Considerations for intra‐ and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Control strategies for established populations of invasive alien species can be costly and complex endeavours, which are frequently unsuccessful. Therefore, rapid-reaction techniques that are capable of maximising efficacy whilst minimising environmental damage are urgently required. The Asian clam (Corbicula fluminea Müller, 1774), and the zebra mussel (Dreissena polymorpha Pallas, 1771), are invaders capable of adversely affecting the functioning and biodiversity of freshwater ecosystems. Despite efforts to implement substantial population-control measures, both species continue to spread and persist within freshwater environments. As bivalve beds often become exposed during low-water conditions, this study examined the efficacy of steam-spray (≥100 °C, 350 kPa) and open-flame burn treatments (~1000 °C) to kill exposed individuals. Direct steam exposure lasting for 5 min caused 100% mortality of C. fluminea buried at a depth of 3 cm. Further, combined rake and thermal shock treatments, whereby the substrate is disturbed between each application of either a steam or open flame, caused 100% mortality of C. fluminea specimens residing within a 4-cm deep substrate patch, following three consecutive treatment applications. However, deeper 8-cm patches and water-saturated substrate reduced maximum bivalve species mortality rates to 77% and 70%, respectively. Finally, 100% of D. polymorpha specimens were killed following exposure to steam and open-flame treatments lasting for 30 s and 5 s, respectively. Overall, our results confirm the efficacy of thermal shock treatments as a potential tool for substantial control of low-water-exposed bivalves. Although promising, our results require validation through upscaling to field application, with consideration of other substrate types, increased substrate depth, greater bivalve densities, non-target and long-term treatment effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Article impact statement : In an era of profound biodiversity crisis, invasion costs, invader impacts, and human agency should not be dismissed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Plastic pollution is a major global issue and its impacts on ecosystems and socioeconomic sectors lack comprehensive understanding. The integration of plastics issues into the educational system of both primary and secondary schools has often been overlooked, especially in Africa, presenting a major challenge to environmental awareness. Owing to the importance of early age awareness, this study aims to investigate whether plastic pollution issues are being integrated into South African primary and secondary education school curriculums. Using face-to-face interviews with senior educators, we address this research problem by investigating (i) the extent to which teachers cover components of plastic pollution, and (ii) educator understandings of plastic pollution within terrestrial and aquatic environments. The results indicate that plastic pollution has been integrated into the school curriculum in technology, natural science, geography, life science, life skills and life orientation subjects. However, there was a lack of integration of management practices for plastics littering, especially in secondary schools, and understanding of dangers among different habitat types. This highlights the need for better educational awareness on the plastic pollution problem at both primary and secondary school level, with increased environmental programs needed to educate schools on management practices and impacts
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Highlights: • BDI, BIWQ, CEC, IDAP and SLA indices were strongly explained by sediment variables. • DES and SHE indices were explained by water and physical variables. • Isotope values at all sites indicated inorganic to organic impacts. • Microphytobenthos (MPB) δ15N values were significantly correlated to TDI, SPI and IDAP indices. • MPB δ15N values are strong indicators of nitrogen pollution across spatiotemporal gradients. Abstract: Rivers are impacted by pollutants from anthropogenic activities such as urbanisation and agricultural practices. Whilst point source pollution has been widely studied and in some cases remediated, non-point pollutant sources remain pervasive, particularly in developing countries that lack economic and human capacity. Monitoring of pollution levels in many regions is additionally challenged by a lack of robust indicators for nitrogen inputs, however, diatom community indices and analysis of variation in microphytobenthos (MBP) stable isotope analysis variations have potential. The present study investigates variations and utilities in benthic diatom indices and MPB δ15N along different river sections (n = 31) of an austral river between two seasons (wet and dry), testing for relationships with key environmental variables (physical, water and sediment), in the context of N monitoring. One hundred and eighteen diatom taxa belonging to 36 genera were identified, with physical (water flow), water (nitrate, P and total dissolved solids) and sediment (B, Ca, Cr, Na, N, P, SOM, Pb and Zn) variables correlating to one or more of the 12 diatom indices presented. In particular, Biological Diatom Index, Biological Index of Water Quality, Central Economic Community, Index of Artois-Picardie Diatom (IDAP) and Sládeček’s Index were strongly explained by sediment variables, whilst Descy’s Pollution Index and Schiefele and Schreiner’s Index were explained by water and physical variables. While MPB δ15N were within the “no impact” level in the wet and dry seasons at reference (i.e. unpolluted) sites, all sites located in agricultural or urban areas, and downstream of sewage discharges, had a wider range that encompassed increasing organic impacts (“inorganic impacts” to high “organic impacts”). Temperature and turbidity (negative), as well as dissolved oxygen, waterway width and depth (positive), significantly affected MPB δ15N, while effects of chemistry variables were less apparent. Overall, we found that MPB δ15N signatures were significantly correlated with Trophic Diatom Index, the Specific Pollution sensitivity Index and the Artois-Picardie Diatom Index, suggesting the utility of diatoms and MPB δ15N in assessments of aquatic pollution. In turn, MPB δ15N values are strong indicators of N pollution across spatial and seasonal gradients. Thus, the results showed the effects of sediment variables on diatoms to be strong, indicating that sediment rather than water characteristics more strongly structure diatom communities. Thus, sediments variables should be sampled when conducting bioassessment studies.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Invasive alien species are driving global biodiversity loss, compromising ecosystem function and service provision, and human, animal and plant health. Habitat characteristics and geographical origin may predict invasion success, and in aquatic environments could be mediated principally by salinity tolerance. Crustacean invaders are causing global problems and we urgently require better predictive power of their invasiveness. Here, we compiled global aquatic gammarid (Crustacea: Amphipoda: Gammaroidea) diversity and examined their salinity tolerances and regions of origin to test whether these factors predict invasion success. Across 918 aquatic species within this superfamily, relatively few gammarids (n = 27, 3%) were reported as aliens, despite extensive invasion opportunities and high numbers of published studies on amphipod invasions. However, reported alien species were disproportionately salt-tolerant (i.e. 32% of brackish-water species), with significantly lower proportions of aliens originating from freshwater and marine environments (both 1%). Alien gammarids also significantly disproportionally originated from the Ponto-Caspian (20% of these taxa) when compared with all ‘other' grouped regions (1%), and principally invaded Eurasian waters, with translocations of salt-tolerant taxa to freshwaters being pervasive. This suggests habitat characteristics, alongside regional contexts, help predict invasibility. In particular, broad environmental tolerances to harsh environments and associated evolutionary history probably promote success of aliens globally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The study of wetlands is particularly important as these systems act as natural water purifiers and thus can act as sinks for contaminated particles. Wetland sediments are important as they provide an indication of potential contamination across temporal and spatial scales. The current study aimed to investigate the distributions of selected metals and nutrients in different sites in relation to sediment depth, and identify relationships among sediment metals. Significant differences in nutrient (i.e., N, P) and metal (i.e., K, Mg, Na, Fe, Cu, B) concentrations were found across study sites, whereas nutrients (i.e., N, P) and metals (i.e., Ca, Mg, Fe, Cu, Zn) were significantly different with sediment depths. When compared against Canadian sediment standards, most of the assessed metals were within the “no effect” level across the different sites and depths. The K, Ca, and Mg concentration showed extreme contamination across all sites and depths. The enrichment factor values for K, Ca, and Mg showed extremely high enrichment levels for all sites and sediment depths. The Na, Mn, Fe, Cu, Zn, and B concentration showed mostly background enrichment levels. All sediments across the different sites and sediment depths indicated deterioration of sediment quality. Pearson correlations suggest that most metals might have originated in a similar source as that of Mn and B, owing to a lack of significant differences. These results provide baseline information for the general management of the Nylsvley Wetland in relation to sediment metal pollution. The specific sources of metal contaminants also require further elucidation to further inform management efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...