GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Tellus A, Stockholm University Press, ( 2010-08)
    Type of Medium: Online Resource
    ISSN: 1600-0870 , 0280-6495
    RVK:
    RVK:
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2010
    detail.hit.zdb_id: 2026987-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Tellus A, Stockholm University Press, Vol. 62, No. 4 ( 2010-08), p. 530-550
    Type of Medium: Online Resource
    ISSN: 0280-6495
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Stockholm University Press
    Publication Date: 2010
    detail.hit.zdb_id: 2026987-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Sustainability, Cambridge University Press (CUP), Vol. 4 ( 2021)
    Abstract: We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments. Technical summary A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations. Social media summary Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
    Type of Medium: Online Resource
    ISSN: 2059-4798
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2929769-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 342, No. 6165 ( 2013-12-20), p. 1445-1445
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2013
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 97, No. 12 ( 2016-12-01), p. 2379-2394
    Abstract: Mittelfristige Klimaprognose (MiKlip), an 8-yr German national research project on decadal climate prediction, is organized around a global prediction system comprising the Max Planck Institute Earth System Model (MPI-ESM) together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that target future operational use. Three prediction system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multiyear-mean European summer surface temperatures, extratropical cyclone tracks, the quasi-biennial oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of 2–3 years.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Oceans Vol. 104, No. C12 ( 1999-12-15), p. 29529-29547
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 104, No. C12 ( 1999-12-15), p. 29529-29547
    Abstract: We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent‐Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN‐) line‐by‐line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The “kinematic sensitivity” to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east‐west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C8 ( 1996-08-15), p. 18409-18432
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C8 ( 1996-08-15), p. 18409-18432
    Abstract: A Green's function method for obtaining an estimate of the ocean circulation using both a general circulation model and altimetric data is demonstrated. The fundamental assumption is that the model is so accurate that the differences between the observations and the model‐estimated fields obey a linear dynamics. In the present case, the calculations are demonstrated for model/data differences occurring on a very large scale, where the linearization hypothesis appears to be a good one. A semi‐automatic linearization of the Bryan/Cox general circulation model is effected by calculating the model response to a series of isolated (in both space and time) geostrophically balanced vortices. These resulting impulse responses or “Green's functions” then provide the kernels for a linear inverse problem. The method is first demonstrated with a set of “twin experiments” and then with real data spanning the entire model domain and a year of TOPEX/POSEIDON observations. Our present focus is on the estimate of the time‐mean and annual cycle of the model. Residuals of the inversion/assimilation are largest in the western tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution diminishes with depth with 1 year of data. The model mean is modified such that the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted southward by about 10°. Corrections to the flow field at the annual cycle suggest that the dynamical response is weak except in the tropics, where the estimated seasonal cycle of the low‐latitude current system is of the order of 2 cm/s. The underestimation of observed fluctuations can be related to the inversion on the coarse spatial grid, which does not permit full resolution of the tropical physics. The methodology is easily extended to higher resolution, to use of spatially correlated errors, and to other data types.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Geophysical Research Letters Vol. 28, No. 9 ( 2001-05-01), p. 1775-1778
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 28, No. 9 ( 2001-05-01), p. 1775-1778
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Geophysical Research Letters Vol. 34, No. 5 ( 2007-03)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 34, No. 5 ( 2007-03)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Journal of Geophysical Research: Oceans Vol. 117, No. C4 ( 2012-04), p. n/a-n/a
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 117, No. C4 ( 2012-04), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...