GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (452)
  • Other types  (5)
Document type
Keywords
Publisher
Language
  • 1
    Publication Date: 2022-03-24
    Description: We collected a suite of core top samples during R/V Sonne Cruise SO257 in May 2017 along the southwestern front of the Indo‐Pacific Warm Pool (IPWP) to monitor the variability of Southern Hemisphere tropical and subtropical sea surface hydrology and to assess temperature and salinity reconstructions with data sets reflecting conditions in the post‐monsoonal season. In our core top samples, a steep increase in planktic δ18O, associated with a decrease in sea surface temperature (SST), indicates that the southwestern front of the IPWP is located between 23° and 24°S during austral fall. We additionally reconstructed SST, sea surface salinity ,and δ18O seawater (δ18Osw) over the last 450 kyr in two sediment successions located within and beyond the monsoonal rain belt. Our records show that SST was highly coherent and phase‐locked with atmospheric pCO2 during the last 450 kyr. The regional differences in the δ18Osw records reveal that the Western Australian Margin north of 15°S remained seasonally under the influence of IPWP water masses, even during glacials. The temporal variability in upper ocean hydrology along the Western Australian Margin is not directly coupled to local monsoonal precipitation, but is strongly affected by advective mixing of Indonesian Throughflow derived water masses.
    Description: Key Points: Southwest front of modern Indo‐Pacific Warm Pool (IPWP) during austral fall is located between 23° and 24°S. Western Australian Margin north of 15°S remained seasonally influenced by IPWP throughout past 450 kyr. Upper ocean hydrology off Western Australia represents an integrated signal of monsoonal precipitation and advective mixing.
    Description: China Scholarship Council
    Description: German Federal Ministry of Education and Research
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8–9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16–15 Ma) and across the major global cooling (~13.9–13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area toward the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Description: Key Points: A consistent mix of clay sources contributed to the Bay of Bengal throughout the middle to late Miocene A marked change in detrital Sr, Nd, and Pb isotope variability at 13.5 Ma was related to Miocene global cooling Transient orbital‐scale fluctuations in clay source most likely reflect changes in monsoon intensity
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; Bay of Bengal ; IODP Site U1443 ; Miocene ; sediment provenance ; Himalayas ; weathering ; erosion
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-07
    Description: We reconstructed the variability of the Earth's strongest hydrological system, the Indian monsoon, over the interval 6.24 to 4.91 Ma at International Ocean Discovery Program (IODP) Expedition 353 Site U1448 in the Andaman Sea. We integrated high-resolution benthic and planktic foraminiferal carbon and oxygen isotopes with Mg/Ca measurements of the mixed layer foraminifer Trilobatus sacculifer to reconstruct the isotopic composition of seawater (δ18Osw) and the gradient between planktic and benthic foraminiferal δ13C. A prominent increase in mixed layer temperatures of ~4°C occurred between 5.55 and 5.28 Ma, accompanied by a change from precession- to obliquity-driven variability in planktic δ18O and δ18Osw. We suggest that an intensified cross-equatorial transport of heat and moisture, paced by obliquity, led to increased summer monsoon precipitation during warm stages after 5.55 Ma. Transient cold stages were characterized by reduced mixed layer temperatures and summer monsoon failure, thus resembling late Pleistocene stadials. In contrast, an overall cooler background climate state with a strengthened biological pump prevailed prior to 5.55 Ma. These findings highlight the importance of internal feedback processes for the long-term evolution of the Indian monsoon.
    Keywords: 551.6 ; Indian monsoon ; Miocene-Pliocene transition ; Bay of Bengal ; Mg/Ca paleothermometry ; stable isotopes ; orbital forcing
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-29
    Description: The long‐term evolution of the East Asian Monsoon and the processes controlling its variability under changing climate boundary conditions remain enigmatic. Here, we integrate new and published high‐resolution planktic and benthic foraminiferal isotope data with proxy records for chemical weathering derived from diffuse reflectance spectroscopy at Ocean Drilling Program Site 1146 (South China Sea) to reconstruct the evolution of the summer monsoon between ∼17 and 5 Ma. Our records show that an overall warm and humid tropical climate prevailed over southeastern Asia during the Miocene Climatic Optimum, suggesting northward expansion of the tropical rain belt in response to greenhouse gas forcing. By contrast, monsoon seasonality increased during the middle Miocene Climatic Transition in tandem with Antarctic glacial expansion and global cooling. Substantial weakening of the summer monsoon between ∼12.7 and 10.9 Ma supports that decreased weathering and riverine input of nutrients and alkalinity contributed to carbonate depletion in the deep ocean during the Carbonate Crash. Intensification of monsoonal circulation and strengthening of the biological pump through the late Miocene promoted carbon burial, drawdown of atmospheric CO2, and climate cooling during the Biogenic Bloom. These results underscore the dynamic evolution of the East Asian Monsoon throughout the middle to late Miocene. Variations in local insolation forcing and in Southern Hemisphere ice volume, influencing the latitudinal thermal gradient, evaporation‐moisture budgets, and the strength of the tropical convection, exerted major controls on the development of the monsoon.
    Description: Key Points: Equable, warm, and humid climate over Southeast Asia during Miocene Climatic Optimum due to latitudinal expansion of tropical convection. Intensification of seasonal monsoonal regime linked to stepwise climate cooling during middle Miocene Climatic Transition. Decreased riverine input of alkalinity to ocean due to summer monsoon decline contributed to middle to late Miocene Carbonate Crash.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: International Ocean Discovery Program ; planktic and benthic stable isotopes ; diffuse reflectance spectroscopy ; Miocene Climatic Optimum ; Carbonate Crash ; Biogenic Bloom
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-23
    Description: The late Miocene was a period of declining CO2 levels and extensive environmental changes, which likely had a large impact on monsoon strength as well as on the weathering and erosion intensity in the South Asian Monsoon domain. To improve our understanding of these feedback systems, detrital clays from the southern Bay of Bengal (International Ocean Discovery Program Site U1443) were analyzed for the radiogenic isotope compositions of Sr, Nd, and Pb to reconstruct changes in sediment provenance and weathering regime related to South Asian Monsoon rainfall from 9 to 5 Ma. The 100 kyr resolution late Miocene to earliest Pliocene record suggests overall low variability in the provenance of clays deposited on the Ninetyeast Ridge. However, at 7.3 Ma, Nd and Pb isotope compositions indicate a switch to an increased relative contribution from the Irrawaddy River (by ∼10%). This shift occurred during the global benthic δ13C decline, and we suggest that global cooling and increasing aridity resulted in an eastward shift of precipitation patterns leading to a more focused erosion of the Indo‐Burman Ranges. Sr isotope compositions were decoupled from Nd and Pb isotope signatures and became more radiogenic between 6 and 5 Ma. Grassland expansion generating thick, easily weatherable soils may have led to an environment supporting intense chemical weathering, which is likely responsible for the elevated detrital clay 87Sr/86Sr ratios during this time. This change in Sr isotope signatures may also have contributed to the late Miocene increase of the global seawater Sr isotope composition.
    Description: Plain Language Summary: The South Asian or Indian monsoon affects the lives of billions. Through the erosion and weathering of rocks, the monsoon also has the potential to remove carbon dioxide from the atmosphere through increased weathering in the region including the Himalaya Mountains. The late Miocene, between 9 and 5 million years ago, was a period of global cooling and proliferation of grasslands in different regions including South Asia. Here, we examine the composition of clays formed by rock weathering during the late Miocene to determine their source region around the Bay of Bengal. The results suggest a generally stable mixture of sources with the strongest sources being regions with the highest monsoon rainfall today. We identify slight changes in the mixture of sources, which accompany a global change in carbon cycling, highlighting the role monsoon climate likely played in these changes. Toward the end of the Miocene, we identify a change in the Sr isotopes, which was not caused by source changes but by the strength of the rock weathering. This change has been observed in global records and it seems likely that it was driven by rock weathering in the South Asian Monsoon region.
    Description: Highlights: Radiogenic isotope compositions of detrital clays from the Bay of Bengal indicate a generally stable provenance from 9 to 5 Ma. A step change in Nd and Pb isotope compositions at ∼7.3 Ma reflects a climatically driven eastward shift in precipitation patterns resulting in enhanced erosion of the Indo‐Burman Ranges. Elevated 87Sr/86Sr between 6 and 5 Ma was likely related to increased chemical weathering caused by thicker soils and by C4 plant expansion.
    Description: DFG
    Description: ANR
    Description: IODP
    Keywords: ddc:551.302 ; ddc:551.701
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; Aluminium; Calcium; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Joides Resolution; North west Australian continental margin; Potassium; X-ray fluorescence core scanner (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 6120 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Isotope ratio mass spectrometry; Joides Resolution; North west Australian continental margin; Planulina wuellerstorfi, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 174 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; Aluminium; Calcium; Chlorine; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Iron; Joides Resolution; North west Australian continental margin; Potassium; Titanium; X-ray fluorescence core scanner (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 12240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holbourn, Ann E; Kuhnt, Wolfgang; Lyle, Mitchell W; Schneider, Leah; Romero, Oscar E; Andersen, Nils (2014): Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19-22, https://doi.org/10.1130/G34890.1
    Publication Date: 2023-05-12
    Description: During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
    Keywords: 321-U1338; COMPCORE; Composite Core; Exp321; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect II / Juan de Fuca
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holbourn, Ann E; Kuhnt, Wolfgang; Kochhann, Karlos Guilherme Diemer; Andersen, Nils; Meier, K J Sebastian (2015): Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology, 43(2), 123-126, https://doi.org/10.1130/G36317.1
    Publication Date: 2023-05-12
    Description: The Miocene Climatic Optimum (~17-14.7 Ma) represents one of several major interruptions in the long-term cooling trend of the past 50 million years. To date, the processes driving high-amplitude climate variability and sustaining global warmth during this remarkable interval remain highly enigmatic. We present high-resolution benthic foraminiferal and bulk carbonate stable isotope records in an exceptional, continuous, carbonate-rich sedimentary archive (Integrated Ocean Drilling Program Site U1337, eastern equatorial Pacific Ocean), which offer a new view of climate evolution over the onset of the Climatic Optimum. A sharp decline in d18O and d13C at ~16.9 Ma, contemporaneous with a massive increase in carbonate dissolution, demonstrates that abrupt warming was coupled to an intense perturbation of the carbon cycle. The rapid recovery in d13C at ~16.7 Ma, ~200 k.y. after the beginning of the MCO, marks the onset of the first carbon isotope maximum within the long-lasting "Monterey Excursion". These results lend support to the notion that atmospheric pCO2 variations drove profound changes in the global carbon reservoir through the Climatic Optimum, implying a delicate balance between changing CO2 fluxes, rates of silicate weathering and global carbon sequestration. Comparison with a high-resolution d13C record spanning the onset of the Cretaceous Oceanic Anoxic Event 1a (~120 Ma ago) reveals common forcing factors and climatic responses, providing a long-term perspective to understand climate-carbon cycle feedbacks during warmer periods of Earth's climate with markedly different atmospheric CO2 concentrations.
    Keywords: 321-U1337; COMPCORE; Composite Core; Exp321; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; Joides Resolution; Pacific Equatorial Age Transect II / Juan de Fuca
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...