GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    BIOMED CENTRAL LTD
    In:  EPIC3BMC Evolutionary Biology, BIOMED CENTRAL LTD, 14, pp. 164, ISSN: 1471-2148
    Publication Date: 2014-08-26
    Description: Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-10
    Description: Noroviruses are the major cause of foodborne outbreaks of acute gastroenteritis, which are quiet often linked to raw oyster consumption. Previous studies have suggested histo-blood group antigens (HBGA)-like structures in the oyster tissues as ligands for norovirus binding and persistence. To better understand how oysters can function as vectors for common human noroviruses we have first tested the ability of the GI.1 West Chester, the pandemic GII.4 Sydney, and the epidemic GII.17 Kawasaki308 strains to interact with oyster tissues, and secondly explored how the HBGA preferences of these strains can affect their persistence in oyster tissues. We have found limited HBGA expression in oyster tissues. Only A and H type 1 HBGAs were present in digestive tissues and palps of the Pacific oyster Crassostrea gigas, while gills and mantle lack any HBGA structures. Virus-Like particles (VLPs) of the GI.1 West Chester norovirus reacted with the digestive tissues and palps. Despite of the lack of HBGA expression in mantle, dominant GII.4 Sydney strain readily bound to all the oyster tissues, including digestive tissues, gills, palps, and mantle. In contrast, no binding of the epidemic GII.17 Kawasaki308 VLPs to any oyster tissues was observed. In synthetic HBGA and saliva-binding assays, GI.1 reacted with A type, H type, and Lewis b HBGAs. GII.4 Sydney VLPs showed a broad binding pattern and interacted with various HBGA types, including H type 1 structures. Compared to GI.1 and GII.4 VLPs, the GII.17 Kawasaki308 VLPs only weakly associated with HBGAs carbohydrates and mainly exhibited low affinity binding to long-chain saccharides containing A type, B type, H type, Leb blood group epitopes. Our findings therefore indicate that GI.1 and GII.4 noroviruses are likely to be concentrated in the oysters via HBGA-like glycans potentially leading to increased long term transmission, while for the GII.17 Kawasaki308 strain oysters can only function as short term transmission vectors in periods of high environmental virus concentrations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Common Wadden Sea Secretariat
    In:  EPIC3Wadden Sea Quality Status Report, Wilhelmshaven, Common Wadden Sea Secretariat, 23 p.
    Publication Date: 2018-11-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Environmental Microbiology, WILEY-BLACKWELL PUBLISHING, 18(3), pp. 970-987, ISSN: 1462-2912
    Publication Date: 2017-02-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-06
    Description: With globally growing aquaculture activities, the co-introduction of parasites alongside large-scale movements of commercial species poses an increasing risk for marine ecosystems. Here, we present the first record of the shell-boring polychaete Polydora websteri Hartman in Loosanoff and Engle, 1943 in invasive Pacific oysters Crassostrea (Magallana) gigas (Thunberg, 1793) in the European Atlantic Ocean. In October 2014, mud blisters in the shells of wild Pacific oysters and specimens of a spionid polychaete were observed in close proximity to a commercial oyster farm at the island of Sylt (Germany) in the European Wadden Sea. Subsequent investigations indicated that these blisters only occurred near the farm and that no other mollusc species were affected. Morphological and molecular analysis identified the polychaete as Polydora websteri, a species that nowadays widely occurs around the globe, but likely is native to the Asian Pacific. Later sampling activities detected P. websteri also at other locations around Sylt as well as in the Dutch part of the Wadden Sea at the island of Texel. The number of polychaetes in the oysters was, however, relatively low and mostly below 10 individuals per oyster. Together, this evidence suggests that P. websteri is currently extending its range. As the introduction of P. websteri may have severe ecological and economic implications, this study aims to alert others to look for P. websteri at Western European coasts within farmed or wild Pacific oysters to further document its spread.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Frontiers in Ecology and Evolution, 8, ISSN: 2296-701X
    Publication Date: 2020-10-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-09
    Description: There are surprisingly few field studies on the role of invasive species on parasite infection patterns in native hosts. We investigated the role of invasive Pacific oysters (Magallana gigas) in determining parasite infection levels in native blue mussels (Mytilus edulis) in relation to other environmental and biotic factors. Using hierarchical field sampling covering three spatial scales along a large intertidal ecosystem (European Wadden Sea), we found strong spatial differences in infec- tion levels of five parasite species associated with mussels and oysters. We applied mixed models to analyse the associa- tions between parasite prevalence and abundance in mussels and oysters, and 12 biological and environmental factors. For each parasite–host relationship, an optimal model (either a null, one-factor or two-factor model) was selected based on AIC scores. We found that the density of invasive oysters contributed to three of the 12 models. Other biological factors such as host size (six models), and the density of target or alternative host species (five models) contributed more frequently to the best models. Furthermore, for parasite species infecting both mussels and oysters, parasite population densities were higher in native mussels, attributed to the higher densities of mussels. Our results indicate that invasive species can affect parasite infection patterns in native species in the field, but that their relative contribution may be further mediated by other biologi- cal and environmental parameters. These results stress the usefulness of large-scale field studies for detailed assessments of the mechanisms underlying the impacts of invasive species on native host communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-09
    Description: Invasive species, and especially invasive parasites, represent excellent models to study ecological and evolutionary mechanisms in the wild. To understand these processes, it is crucial to obtain more knowledge on the native range, invasion routes and invasion history of invasive parasites. We investigated the consecutive invasions of two parasitic copepods (Mytilicola intestinalis and Mytilicola orientalis) by combining an extensive literature survey covering the reported putative native regions and the present-day invaded regions with a global phylogeography of both species. The population genetic analyses based on partial COI sequences revealed significant population differentiation for M. orientalis within the native region in Japan, while introduced populations in North America and Europe could not be distinguished from the native ones. Thus, M. orientalis’ invasion history resembles the genetic structure and recent spread of its principal host, the Pacific oyster, Crassostrea gigas, while M. intestinalis lacks population genetic structure and has an overall low genetic diversity. Therefore, the native origin of M. intestinalis remains unclear. With this study, we demonstrate that even highly related and biologically similar invasive species can differ in their invasion genetics. From this, we conclude that extrapolating invasion genetics dynamics from related invasive taxa may not always be possible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...