GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 561 (2016): 189-201, doi:10.3354/meps11915.
    Description: Thalia democratica blooms are a recurrent phenomenon in many coastal areas of the Mediterranean Sea and have significant ecological effects. To better understand the environmental drivers of salp blooms, we conducted 8 surveys to sample T. democratica in contrasting seasonal, temperature and chlorophyll conditions. In each survey, short-term variations in the abundances of different salp stages were assessed by sampling the same population at 30 min intervals. Using these data, we estimated the parameters in a set of stage-classified matrix population models representing different assumptions about the influence of temperature and chlorophyll on each stage. In the model that best explains our observations, only females are affected by changes in water temperature. Whether this is a direct influence of temperature or an indirect effect reflecting low food availability, female reproduction cessation seems to slow population growth under unfavourable conditions. When conditions become favourable again, females liberate the embryo and change sex to male, allowing for mating under extremely low salp densities and triggering the bloom. In contrast to previous findings, our results suggest that females, rather than oozooids, are responsible for the sustainability of salp populations during latency periods.
    Description: This work was founded by the Ministerio de Ciencia e Innovación under the Fishjelly project, the European commission ENPI CBC MED project under the Jellyrisk project and the European LIFE Commission under the Cubomed project. M. G. Neubert acknowledges the support of the US National Science Foundation (DEB-1145017 and DEB-1257545).
    Keywords: Matrix population models ; Pelagic tunicate ecology ; Population latency ; Gelatinous zooplankton blooms
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-12
    Description: We use hydrographic, velocity and drifter data from a cruise carried out in November 2008 to describe the continental slope current system in the upper thermocline (down to 600 m) between Cape Verde and the Canary Islands. The major feature in the region is the Cape Verde Frontal Zone (CVFZ), separating waters from tropical (southern) and subtropical (northern) origin. The CVFZ is found to intersect the slope north of Cape Blanc, between 22°N and 23°N, but we find that southern waters are predominant over the slope as far north as 24°N. South of Cape Blanc (21.25°N) the Poleward Undercurrent (PUC) is a prominent northward jet (50 km wide), reaching down to 300 m and indistinguishable from the surface Mauritanian Current. North of Cape Blanc the upwelling front is found far offshore, opening a near-slope northward path to the PUC. Nevertheless, the northward PUC transport decreases from 2.8 Sv at 18°N to 1.7 Sv at 24°N, with about 1 Sv recirculating ofshore just south of Cape Blanc, in agreement with the trajectory of subsurface drifters. South of the CVFZ there is an abrupt thermohaline transition at σ ϴ =26.85 kg m –3 , which indicates the lower limit of the relatively pure (low salt and high oxygen content) South Atlantic Central Water (SACW) variety that coexists with the dominant locally-diluted (salinity increases through mixing with North Atlantic Central Water but oxygen diminishes because of enhanced remineralization) Cape Verde (SACWcv) variety. At 16°N about 70% of the PUC transport corresponds to the SACW variety but but this is transformed into 40% SACWcv at 24°N. However, between Cape Verde and Cape Blanc and in the 26.85 〈 σ ϴ 〈 27.1 layer, we measure up to 0.8 Sv of SACWcv being transported south. The results strongly endorse the idea that the slope current system plays a major role in tropical-subtropical water-mass exchange.
    Print ISSN: 0214-8358
    Electronic ISSN: 1886-8134
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-12
    Description: Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity), an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis). SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34) and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC), and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.
    Print ISSN: 0214-8358
    Electronic ISSN: 1886-8134
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-12
    Description: Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.
    Print ISSN: 0214-8358
    Electronic ISSN: 1886-8134
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...