GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
Document type
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2015-10-31
    Description: Soil moisture–atmosphere feedbacks play an important role in the regional climate over many regions worldwide, not only for the mean climate but also for extreme events. Several studies have shown that the extent and severity of droughts and heat waves can be significantly impacted by dry or wet soil moisture conditions. To date, the impact of soil moisture on heavy rainfall events has been less frequently investigated. Thus, we consider the role of soil moisture in the formation of heavy rainfall using the Oder flood event in July 1997 as an example. Here, we used the regional climate model CCLM as an uncoupled standalone model and the coupled COSTRICE system, where CCLM is coupled with an ocean and a sea ice model over the Baltic and North Sea regions. The results from climate simulations over Europe show that the coupled model can capture the second phase (18–20 July) of heavy rainfall that led to the Oder flood, while the uncoupled model does not. Sensitivity experiments demonstrate that the better performance of the coupled model can be attributed to the simulated soil moisture conditions in July 1997 in Central Europe, which were wetter for the coupled model than for the uncoupled model. This finding indicates that the soil moisture preceding the event significantly impacted the generation of heavy rainfall in this second phase. The better simulation in the coupled model also implies the added value that the atmosphere–ocean coupling has on the simulation of this specific extreme event. As none of the model versions captured the first phase (4–8 July), despite the differences in soil moisture, it can be concluded that the importance of soil moisture for the generation of heavy rainfall events strongly depends on the event and the general circulation pattern associated with it. Keywords: climate modelling, dynamic meteorology, climate dynamics (Published: 30 October 2015) Citation: Tellus A 2015, 67, 28661, http://dx.doi.org/10.3402/tellusa.v67.28661
    Print ISSN: 0280-6495
    Electronic ISSN: 1600-0870
    Topics: Geography , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-06
    Description: Climate simulations for the North Atlantic and Europe for recent and future conditions simulated with the regionally coupled ROM model are analyzed and compared to the results from the MPI‐ESM. The ROM simulations also include a biogeochemistry and ocean tides. For recent climate conditions, ROM generally improves the simulations compared to the driving model MPI‐ESM. Reduced oceanic biases in the Northern Atlantic are found, as well as a better simulation of the atmospheric circulation, notably storm tracks and blocking. Regarding future climate projections for the 21st century following the RCP 4.5 and 8.5 scenarios, MPI‐ESM and ROM largely agree qualitatively on the climate change signal over Europe. However, many important differences are identified. For example, ROM shows an SST cooling in the Subpolar Gyre which is not present in MPI‐ESM. Under the RCP8.5 scenario, ROM Arctic sea ice cover is thinner and reaches the seasonally ice‐free state by 2055, well before MPI‐ESM. This shows the decisive importance of higher ocean resolution and regional coupling for determining the regional responses to global warming trends. Regarding biogeochemistry, both ROM and MPI‐ESM simulate a widespread decline in winter nutrient concentration in the North Atlantic of up to ~35%. On the other hand, the phytoplankton spring bloom in the Arctic and in the North‐Western Atlantic starts earlier and the yearly primary production is enhanced in the Arctic in the late 21st century. These results clearly demonstrate the added value of ROM to determine more detailed and more reliable climate projections at the regional scale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-17
    Description: The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean – regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present day climate. A global ocean – sea ice – marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e. ocean, atmosphere, terrestrial hydrology and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-14
    Description: This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local- and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...