GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  River Research and Applications Vol. 35, No. 4 ( 2019-05), p. 353-364
    In: River Research and Applications, Wiley, Vol. 35, No. 4 ( 2019-05), p. 353-364
    Abstract: In this paper we provide the first quantitative evidence of the spatial complexity of habitat diversity across the flow regime for locally anabranching channels and their potential increased biodiversity value in comparison to managed single‐thread rivers. Ecohydraulic modelling is used to provide evidence for the potential ecological value of anabranching channels. Hydraulic habitat (biotopes) of an anabranched reach of the River Wear at Wolsingham, UK, is compared with an adjacent artificially straightened single‐thread reach downstream. Two‐dimensional hydraulic modelling was undertaken across the flow regime. Simulated depth and velocity data were used to calculate Froude number index, known to be closely associated with biotope type, allowing biotope maps to be produced for each flow simulation using published Froude number limits. The gross morphology of the anabranched reach appears to be controlling flow hydraulics, creating a complex and diverse biotope distribution at low and intermediate flows. This contrasts markedly with the near uniform biotope pattern modelled for the heavily modified single‐thread reach. As discharge increases the pattern of biotopes altered to reflect a generally higher energy system, interestingly however, a number of low energy biotopes were activated through the anabranched reach as new subchannels became inundated and this process creates valuable refugia for macroinvertebrates and fish, during times of flood. In contrast, these low energy areas were not seen in the straightened single‐thread reach. Model results suggest that anabranched channels have a vital role to play in regulating flood energy on river systems and in creating and maintaining hydraulic habitat diversity.
    Type of Medium: Online Resource
    ISSN: 1535-1459 , 1535-1467
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2074114-5
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Geological Society of America ; 2018
    In:  GSA Bulletin Vol. 130, No. 11-12 ( 2018-11-01), p. 1825-1841
    In: GSA Bulletin, Geological Society of America, Vol. 130, No. 11-12 ( 2018-11-01), p. 1825-1841
    Type of Medium: Online Resource
    ISSN: 0016-7606
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2018
    detail.hit.zdb_id: 2028776-8
    detail.hit.zdb_id: 2008165-0
    detail.hit.zdb_id: 449720-X
    detail.hit.zdb_id: 1351-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Proceedings of the International Association of Hydrological Sciences Vol. 377 ( 2018-04-16), p. 51-56
    In: Proceedings of the International Association of Hydrological Sciences, Copernicus GmbH, Vol. 377 ( 2018-04-16), p. 51-56
    Abstract: Abstract. Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.
    Type of Medium: Online Resource
    ISSN: 2199-899X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2827925-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  River Research and Applications Vol. 34, No. 7 ( 2018-09), p. 709-720
    In: River Research and Applications, Wiley, Vol. 34, No. 7 ( 2018-09), p. 709-720
    Abstract: This study examines the character of developing anabranched channel networks on the River Wear, north England, using metre‐scale aerial LiDAR. DSM‐DTM interpretation reveals a well‐developed vegetation structure and a locally diverse terrain, dominated by an interlinked channel network split by low‐elevation depositional areas with the gross morphology of the reach resembling that of a strongly active meandering/wandering channel suggesting that an anabranching network may develop within systems that were initially active meandering and wandering, evolving in line with floodplain vegetative succession. Utilization of the LiDAR DEM in the hydrological component of the CAESAR‐Lisflood (version 1.4) morphodynamic model has generated local hydraulic variable estimates through the anabranched reaches for a range of flows. These data clearly demonstrate how elevated flows are transferred out of the primary channel and distributed along the interconnected secondary channel network, creating a diverse set of hydraulic environments. Areas between the channels rapidly become inundated as flows increase, dissipating flow energy. Shear stress estimates throughout the study site reveal a generally reduced ability to mobilize sediments and erode channel margins, in comparison with a single‐thread reach immediately downstream. Anabranched secondary channels appear to operate in disequilibrium and act predominantly as aggradational zones, although with some evidence of scour at channel bifurcation and confluence points. It would appear that the topographic character of anabranching sites efficiently manages flood flow energy, activating secondary channels and low‐elevation areas to distribute flood flows. These findings contrast with the hydraulic data from an adjacent single‐thread reach, characterized by flood flows concentrated in‐channel creating a high erosive potential. We propose that anabranching rivers could play an important role in natural flood and sediment management in many U.K. river systems.
    Type of Medium: Online Resource
    ISSN: 1535-1459 , 1535-1467
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2074114-5
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Earth Surface Processes and Landforms Vol. 43, No. 10 ( 2018-08), p. 2283-2291
    In: Earth Surface Processes and Landforms, Wiley, Vol. 43, No. 10 ( 2018-08), p. 2283-2291
    Abstract: It is not new to recognize that data from remote sensing platforms is transforming the way we characterize and analyse our environment. The ability to collect continuous data spanning spatial scales now allows geomorphological research in a data rich environment and this special issue [coming just eight years after the 2010 special issue of Earth Surface Processes and Landforms (ESPL) associated with the remote sensing of rivers] highlights the considerable research effort being made to exploit this information, for studies of geomorphic form and process. The 2010 special issue on the remote sensing of rivers noted that fluvial remote sensing articles made up some 14% of the total river related articles in ESPL. A similar review of articles up to 2017 reveals that this figure has increased to around 25% with a recent proliferation of articles utilizing satellite‐based data and structure from motion photogrammetry derived data. It is interesting to note, however that many studies published to date are proof of concept, concentrating on confirming the accuracy of the remotely sensed data at the expense of generating new insights and ideas on fluvial form and function. Data is becoming ever more precise and researchers should now be concentrating on analysing these early data sets to develop increased geomorphic insight, to challenge existing paradigms and to advance geomorphic science. The prospect of this occurring is increased by the fact that many of the new remote sensed platforms allow accurate spatial data to be collected cheaply and efficiently, reducing the need for substantial research funding to advance river science. Fluvial geomorphologists have never before been in such a liberated position. As techniques and analytical skills continue to improve it is inevitable that the prediction that remotely sensed data will revolutionize our understanding of geomorphological form and process will prove true, altering our ideas on the very nature of system functioning in the process. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
    Type of Medium: Online Resource
    ISSN: 0197-9337 , 1096-9837
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1479188-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2019
    In:  Advances in Water Resources Vol. 123 ( 2019-01), p. 145-159
    In: Advances in Water Resources, Elsevier BV, Vol. 123 ( 2019-01), p. 145-159
    Type of Medium: Online Resource
    ISSN: 0309-1708
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2023320-6
    detail.hit.zdb_id: 428761-7
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...