GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (31)
  • OceanRep  (4)
Document type
Language
Topic
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Teleseismic tomography across the Chinese Tien Shan shows that seismic wave speeds in the lithosphere beneath central Tien Shan are high and therefore the lithosphere is not weaker than that beneath the adjacent undeformed Tarim and Junggar basins. There is evidence for significant velocity contrasts within the lithosphere that are presumably inherited from the Palaeozoic collision history. The high-velocity, thick Yili block observed underneath the northern Tien Shan is a clue for shortening by a intracontinental subduction. The observed geometry is consistent with a simple model of intracontinental subduction and suggests that, during orogeny, the lithosphere has remained heterogeneous and has deformed along existing planes of weakness rather than by homogeneous thickening of a particularly weak lithosphere.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 7 (1995), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Resolution and reliability estimates of results obtained by seismic tomography strongly depend on the reference model. Inadequate initial reference models may severely distort tomographic images or introduce artefacts that lead to misinterpretations of the results. Reference models are usually obtained by means of a priori near-surface geological information or by geophysical information derived by controlled-source seismology.Starting from the idea that a reference model must approximate the weighted average of data selected for the three-dimensional (3D) inversion, one-dimensional (1D) model for Northwestern Italy is derived that is able to minimize mean of RMS of a set of well-locatable earthquakes, by computing a solution of the coupled hypocentre 1D velocity problem.Such a model, termed the Minimum 1D model, can be used both as an initial reference model for 3D inversion and as a reference velocity model for high-quality routine earthquake location.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 125 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In this paper we develop a forward 2-D thermokinematic model to investigate the Neoalpine 35-0 Ma phase of orogeny along the European Geotraverse (EGT) through the Swiss Alps on a crustal and lithospheric scale. Using a divergence-free kinematic model (div v = 0), we define mass displacements, which subsequently serve as input to a transient thermal model. the thermal model uses critically assessed material prorameters and accounts for the depth dependence of the thermal properties in processes such as crustal thickening and mantle-lithospheric subduction. Based on the presentday density pattern of the deep seismic image and estimated exhumation and shortening rates, we derive, in a first modelling step, a mass-displacement field describing the Neoalpine orogeny as a uniform process in time. In a second—thermal—modelling step, this kinematic scenario is further refined by modelling the non-uniform cooling histories of the southern Lepontine in the Penninic domain. For that purpose we adopt lithospheric shortening rates—and consequently exhumation rates—to agree with total Neoalpine shortening, while keeping the geometry of the kinematic model fixed. the resultant thermokinematic model reflects the main characteristics of Neoalpine tectonics, and shows a good overall agreement with combined geological and geophysical data. the asymmetric feature of the present-day tectonic structure along the profile is strongly reflected in the thermal structure of the lithosphere. This demonstrates the need for a kinematic model to investigate the deep-temperature field in active tectonic provinces. For further refinement of the model, the amounts of shortening have to be more precisely estimated, and a higher spatial density in geochronological and metamorphic data is required. Furthermore, surface heat-flow values are, up to now, too uncertain to constrain the predicted surface heat flow. In summary, our results show that we need, in particular, data constraining the horizontal component of the tectonic and thermal evolution. the results of the Neoalpine orogeny modelling demonstrate that the presented thermokinematic procedure yields a good first-order approximation to investigate crustal-scale and lithospheric processes. We conclude. therefore, that the approach presented provides the potential for application not only to continent-continent collision zones, but also to any active tectonic province.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 79 (1993), S. 87-112 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 51 (1988), S. 153-154 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-05
    Description: The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore–onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged fromthe conversions of teleseismic body-waves and the locations of earthquakes appearswith kinks which increase the dip to 10–20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: “supraslab” earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and “deep flat-thrust” earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver function analysis on a dense 2-D seismic array. Mapping of slab geometry for over 300 km along strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydration embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Birkhäuser
    In:  In: Deep Structure of the Swiss Alps. Results of NRP 20. , ed. by Pfiffner, O. A. Birkhäuser, Basel, pp. 31-38.
    Publication Date: 2016-04-11
    Description: Derivation and application to Central Alps of 3-D seismic crustal structure modeling by use of a large number of criss-crossing controlled-source seismology profiles.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-09
    Description: We present a new approach to relocate earthquakes in the greater western Alpine region using main crustal phases ( Pg , Pn , PmP ) that takes advantage of recent developments in P -wave velocity models and modelling of the Moho topography in the region, as well as the ability to track reflected and refracted phases in three-dimensional (3-D) heterogeneous media. Our approach includes a new 3-D P -wave velocity model for Switzerland and surrounding regions that combines a first-order Moho discontinuity based on local earthquake tomography (LET) and controlled-source seismology (CSS) information and 3-D seismic velocity information based on LET. Traveltimes for the main crustal phases ( Pg , Pn , PmP ) are computed using a fast marching method. We use a non-linear, probabilistic approach to relocate earthquakes that has been extended to include the use of secondary phases. We validate our approach using synthetic data, which was computed for a real earthquake and different combinations of available phases ( Pg , Pn , PmP ). We also applied our approach to relocate four selected earthquakes, two shallow and two deep crustal events in the northern Alpine foreland, for which independent information (ground truth information) on their focal depths exist. Our results demonstrate that the precision and accuracy of focal depth estimates can be greatly improved if secondary phases are used. This gain is a combined effect of an improved range of take-off angles and the use of differential traveltimes between first and secondary arriving phases. Our results also show that reliable information on the Moho depth is crucial to obtain accurate focal depths, if Pn or PmP phases are used in the relocation process. Finally, our approach demonstrates that proper identification of the main crustal phases in combination with an appropriate model parametrization in the forward solver will significantly improve earthquake locations.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-05
    Description: The accurate definition of 3-D crustal structures and, in primis, the Moho depth, are the most important requirement for seismological, geophysical and geodynamic modelling in complex tectonic regions. In such areas, like the Mediterranean region, various active and passive seismic experiments are performed, locally reveal information on Moho depth, average and gradient crustal V p velocity and average V p / V s velocity ratios. Until now, the most reliable information on crustal structures stems from controlled-source seismology experiments. In most parts of the Alpine region, a relatively large number of controlled-source seismology information are available though the overall coverage in the central Mediterranean area is still sparse due to high costs of such experiments. Thus, results from other seismic methodologies, such as local earthquake tomography, receiver functions and ambient noise tomography can be used to complement the controlled-source seismology information to increase coverage and thus the quality of 3-D crustal models. In this paper, we introduce a methodology to directly combine controlled-source seismology and receiver functions information relying on the strengths of each method and in relation to quantitative uncertainty estimates for all data to derive a well resolved Moho map for Italy. To obtain a homogeneous elaboration of controlled-source seismology and receiver functions results, we introduce a new classification/weighting scheme based on uncertainty assessment for receiver functions data. In order to tune the receiver functions information quality, we compare local receiver functions Moho depths and uncertainties with a recently derived well-resolved local earthquake tomography-derived Moho map and with controlled-source seismology information. We find an excellent correlation in the Moho information obtained by these three methodologies in Italy. In the final step, we interpolate the controlled-source seismology and receiver functions information to derive the map of Moho topography in Italy and surrounding regions. Our results show high-frequency undulation in the Moho topography of three different Moho interfaces, the European, the Adriatic–Ionian, and the Liguria–Corsica–Sardinia–Tyrrhenia, reflecting the complexity of geodynamical evolution.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...