GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-13
    Description: The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in non-linear coupled climate models.
    Type: Dataset
    Format: application/zip, 1015.4 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 26 (1998), S. 219-253 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Notes: Abstract For technical reasons, the general circulation of the ocean has historically been treated as a steady, laminar flow field. The recent availability of extremely high-accuracy and high-precision satellite altimetry has provided a graphic demonstration that the ocean is actually a rapidly time-evolving turbulent flow field. To render the observations quantitatively useful for oceanographic purposes has required order of magnitude improvements in a number of fields, including orbit dynamics, gravity field estimation, and atmospheric variability. With five years of very high-quality data now available, the nature of oceanic variability on all space and time scales is emerging, including new findings about such diverse and important phenomena as mixing coefficients, the frequency/wavenumber spectrum, and turbulent cascades. Because the surface elevation is both a cause and consequence of motions deep within the water column, oceanographers soon will be able to provide general circulation numerical models tested against and then combined with the altimeter data. These will be complete three-dimensional time-evolving estimates of the ocean circulation, permitting greatly improved estimates of oceanic heat, carbon, and other property fluxes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 408 (2000), S. 153-153 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Space-borne instruments have revolutionized research on the circulation patterns and strengths of the oceans. For instance, a satellite can observe all of the world's oceans in less than ten days. With radar technology, it can measure the shape of the sea surface and provide observations on the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 391 (1998), S. 476-479 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Motion of the Earth's pole of rotation relative to its crust, commonly referred to as polar motion, can be excited by a variety of geophysical mechanisms. In particular, changes in atmospheric wind and mass fields have been linked to polar motion over a wide range of timescales, but substantial ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-28
    Print ISSN: 0149-0419
    Electronic ISSN: 1521-060X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Published by Taylor & Francis
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Cryosphere, COPERNICUS GESELLSCHAFT MBH, 11, pp. 2265-2281, ISSN: 1994-0416
    Publication Date: 2017-11-06
    Description: Satellite sea ice concentrations (SICs), together with several ocean parameters, are assimilated into a regional Arctic coupled ocean–sea ice model covering the period of 2000–2008 using the adjoint method. There is substantial improvement in the representation of the SIC spatial distribution, in particular with respect to the position of the ice edge and to the concentrations in the central parts of the Arctic Ocean during summer months. Seasonal cycles of total Arctic sea ice area show an overall improvement. During summer months, values of sea ice extent (SIE) integrated over the model domain become underestimated compared to observations, but absolute differences of mean SIE to the data are reduced in nearly all months and years. Along with the SICs, the sea ice thickness fields also become closer to observations, providing added value by the assimilation. Very sparse ocean data in the Arctic, corresponding to a very small contribution to the cost function, prevent sizable improvements of assimilated ocean variables, with the exception of the sea surface temperature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-10
    Description: We investigate sea level trends and variability as reconstructed from tide gauge data and ocean data assimilations (ODA) over the last 60 years. Tide gauge reconstructions (TGR) are mostly based on statistical approaches using selected EOFs, or trained from variability patterns, from altimetric sea level and tide gauge data to extrapolate regional sea level evolution backward in time. Reconstructions also exist from dynamical ocean modeling approaches with and without data assimilation. We intercompare all results and provide ensemble mean and ensemble spreads to describe estimates of past regional sea level changes and their uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, no. 3 (2010): 126-139, doi: 10.5670/oceanog.2010.28
    Description: Through its promotion of coordinated international research programs, the Intergovernmental Oceanographic Commission (IOC) has facilitated major progress on some of the most challenging problems in oceanography. Issues of global significance—such as general ocean circulation, the carbon cycle, the structure and dynamics of ecosystems, and harmful algal blooms—are so large in scope that they require international collaboration to be addressed systematically. International collaborations are even more important when these issues are affected by anthropogenic processes— such as climate change, CO2 enhancement, ocean acidification, pollution, and eutrophication—whose impacts may differ greatly throughout the global ocean. These problems require an entire portfolio of research activities, including global surveys, regional process studies, time-series observations, laboratorybased investigations, and satellite remote sensing. Synthesis of this vast array of results presents its own set of challenges (Hofmann et al., 2010), and models offer an explicit framework for integration of the knowledge gained as well as detailed investigation of the underlying dynamics. Models help us to understand what happened in the past, and to make predictions of future changes—both of which support the development of sound policy and decision making. We review examples of how models have been used for this suite of purposes, focusing on areas where IOC played a key role in organizing and coordinating the research activities.
    Description: Support from the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and National Institute of Environmental Health Sciences. DS acknowledges CLISAP (Integrated Climate System Analysis and Prediction) at the KlimaCampus of the University of Hamburg. PG acknowledges SCOR/ LOICZ Working Group 132.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ponte, R. M., Carson, M., Cirano, M., Domingues, C. M., Jevrejeva, S., Marcos, M., Mitchum, G., van de Wal, R. S. W., Woodworth, P. L., Ablain, M., Ardhuin, F., Ballu, V., Becker, M., Benveniste, J., Birol, F., Bradshaw, E., Cazenave, A., De Mey-Fremaux, P., Durand, F., Ezer, T., Fu, L., Fukumori, I., Gordon, K., Gravelle, M., Griffies, S. M., Han, W., Hibbert, A., Hughes, C. W., Idier, D., Kourafalou, V. H., Little, C. M., Matthews, A., Melet, A., Merrifield, M., Meyssignac, B., Minobe, S., Penduff, T., Picot, N., Piecuch, C., Ray, R. D., Rickards, L., Santamaria-Gomez, A., Stammer, D., Staneva, J., Testut, L., Thompson, K., Thompson, P., Vignudelli, S., Williams, J., Williams, S. D. P., Woppelmann, G., Zanna, L., & Zhang, X. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, 6, (2019): 437, doi:10.3389/fmars.2019.00437.
    Description: A major challenge for managing impacts and implementing effective mitigation measures and adaptation strategies for coastal zones affected by future sea level (SL) rise is our limited capacity to predict SL change at the coast on relevant spatial and temporal scales. Predicting coastal SL requires the ability to monitor and simulate a multitude of physical processes affecting SL, from local effects of wind waves and river runoff to remote influences of the large-scale ocean circulation on the coast. Here we assess our current understanding of the causes of coastal SL variability on monthly to multi-decadal timescales, including geodetic, oceanographic and atmospheric aspects of the problem, and review available observing systems informing on coastal SL. We also review the ability of existing models and data assimilation systems to estimate coastal SL variations and of atmosphere-ocean global coupled models and related regional downscaling efforts to project future SL changes. We discuss (1) observational gaps and uncertainties, and priorities for the development of an optimal and integrated coastal SL observing system, (2) strategies for advancing model capabilities in forecasting short-term processes and projecting long-term changes affecting coastal SL, and (3) possible future developments of sea level services enabling better connection of scientists and user communities and facilitating assessment and decision making for adaptation to future coastal SL change.
    Description: RP was funded by NASA grant NNH16CT00C. CD was supported by the Australian Research Council (FT130101532 and DP 160103130), the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. SJ was supported by the Natural Environmental Research Council under Grant Agreement No. NE/P01517/1 and by the EPSRC NEWTON Fund Sustainable Deltas Programme, Grant Number EP/R024537/1. RvdW received funding from NWO, Grant 866.13.001. WH was supported by NASA (NNX17AI63G and NNX17AH25G). CL was supported by NASA Grant NNH16CT01C. This work is a contribution to the PIRATE project funded by CNES (to TP). PT was supported by the NOAA Research Global Ocean Monitoring and Observing Program through its sponsorship of UHSLC (NA16NMF4320058). JS was supported by EU contract 730030 (call H2020-EO-2016, “CEASELESS”). JW was supported by EU Horizon 2020 Grant 633211, Atlantos.
    Keywords: Coastal sea level ; Sea-level trends ; Coastal ocean modeling ; Coastal impacts ; Coastal adaptation ; Observational gaps ; Integrated observing system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stammer, D., Bracco, A., AchutaRao, K., Beal, L., Bindoff, N. L., Braconnot, P., Cai, W., Chen, D., Collins, M., Danabasoglu, G., Dewitte, B., Farneti, R., Fox-Kemper, B., Fyfe, J., Griffies, S. M., Jayne, S. R., Lazar, A., Lengaigne, M., Lin, X., Marsland, S., Minobe, S., Monteiro, P. M. S., Robinson, W., Roxy, M. K., Rykaczewski, R. R., Speich, S., Smith, I. J., Solomon, A., Storto, A., Takahashi, K., Toniazzo, T., & Vialard, J. Ocean climate observing requirements in support of climate research and climate information. Frontiers in Marine Science, 6, (2019): 444, doi:10.3389/fmars.2019.00444.
    Description: Natural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
    Description: This work was partly supported by the DFG funded excellence center CliSAP of the Universituat Hamburg (DS). AB was supported by the National Science Foundation through award NSF-1658174 and by the NOAA through award NA16OAR4310173. SM was supported by the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program.
    Keywords: Ocean observing system ; Ocean climate ; Earth observations ; In situ measurements ; Satellite observations ; Ocean modeling ; Climate information
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...