GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-01
    Description: European-Union Civil Protection Mechanism, DG-ECHO, Agreement Number: ECHO/SUB/2015/718568/PREV26
    Description: Published
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: 4IT. Banche dati
    Keywords: Europe ; NEAM ; Atlantic Ocean ; Mediterranean Sea ; Aegean Sea ; Marmara Sea ; Black Sea ; earthquake ; tsunami ; moment magnitude ; crustal fault ; subduction interface ; megathrust ; probabilistic hazard model ; natural hazard ; Disaster Risk Reduction ; 05.08. Risk ; 04.06. Seismology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-17
    Description: The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-East Atlantic, the Mediterranean, and connected Seas (NEAM). In this online data product, the hazard results are provided by hazard curves calculated at 2,343 Points of Interest (POI), distributed in the North-East Atlantic (1,076 POIs), the Mediterranean Sea (1,130 POIs), and the Black Sea (137 POIs) at an average spacing of ~20 km. For each POI, hazard curves are given for the mean, 2nd, 16th, 50th, 84th, and 98th percentiles. Maps derived from hazard curves are Probability maps for Maximum Inundation Heights (MIH) of 1, 2, 5, 10, 20 meters; Hazard maps for Average Return Periods (ARP) of 500, 1,000, 2,500, 5,000, 10,000 years. For each map, precalculated displays are provided for the mean, the 16th percentile, and the 84th percentile. All data are also made accessible through an interactive web mapper and through Open Geospatial Consortium standard protocols. The model was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations (grant no. ECHO/SUB/2015/718568/PREV26).
    Description: European-Union Civil Protection Mechanism, DG-ECHO, Agreement Number ECHO/SUB/2015/718568/PREV26
    Description: Published
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Keywords: Europe ; NEAM ; Atlantic Ocean ; Mediterranean Sea ; Aegean Sea ; Marmara Sea ; Black Sea ; earthquake ; tsunami ; moment magnitude ; crustal fault ; subduction interface ; megathrust ; probabilistic hazard model ; natural hazard ; Disaster Risk Reduction ; 05.08. Risk ; 04.06. Seismology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-20
    Description: In seismically active regions with variable dominant focal mechanisms, there is considerable tsunami inundation height uncertainty. Basic earthquake source parameters such as dip, strike, and rake affect significantly the tsunamigenic potential and the tsunami directivity. Tsunami inundation is also sensitive to other properties such as bottom friction. Despite their importance, sensitivity to these basic parameters is surprisingly sparsely studied in literature. We perform suites of systematic parameter searches to investigate the sensitivity of inundation at the towns of Catania and Siracusa on Sicily to changes both in the earthquake source parameters and the Manning friction. The inundation is modelled using the Tsunami-HySEA shallow water code on a system of nested topo-bathymetric grids with a finest spatial resolution of 10 m. This GPU-based model, with significant HPC resources, allows us to perform large numbers of high- resolution tsunami simulations. We analyze the variability of different hydrodynamic parameters due to large earthquakes with uniform slip at different locations, focal depth, and different source parameters. We consider sources both near the coastline, in which significant near-shore co-seismic deformation occurs, and offshore, where near- shore co-seismic deformation is negligible. For distant offshore earthquake sources, we see systematic and intuitive changes in the inundation with changes in strike, dip, rake, and depth. For near-shore sources, the dependency is far more complicated and co- determined by both the source mechanisms and the coastal morphology. The sensitivity studies provide directions on how to resolve the source discretization to optimize the number of sources in Probabilistic Tsunami Hazard Analysis, and they demonstrate a need for a far finer discretization of local sources than for more distant sources. For a small number of earthquake sources, we study systematically the inundation as a function of the Manning coefficient. The sensitivity of the inundation to this parameter varies greatly for different earthquake sources and topo-bathymetry at the coastline of interest. The friction greatly affects the velocities and momentum flux and to a lesser but still significant extent the inundation distance from the coastline. An understanding of all these dependencies is needed to better quantify the hazard when source complexity increases.
    Description: Published
    Description: 757618
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: tsunami ; inundation ; HPC ; earthquakes ; numerical simulations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...