GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 40, pp. 119-134
    Publication Date: 2024-01-12
    Description: In this study we accept 25 families in Diaporthales based on phylogenetic analyses using partial ITS, LSU, rpb2 and tef1-\xce\xb1 gene sequences. Four different families associated with canker and dieback of tree hosts are morphologically treated and phylogenetically compared. These include three new families (Diaporthostomataceae, Pseudomelanconidaceae, Synnemasporellaceae), and one new genus, Dendrostoma (Erythrogloeaceae). Dendrostoma is newly described from Malus spectabilis, Osmanthus fragrans and Quercus acutissima having fusoid to cylindrical, bicellular ascospores, with three new species namely D. mali, D. osmanthi and D. quercinum. Diaporthostomataceae is characterised by conical and discrete perithecia with bicellular, fusoid ascospores on branches of Machilus leptophylla. Pseudomelanconidaceae is defined by conidiogenous cells with apical collarets and discreet annellations, and the inconspicuous hyaline conidial sheath when mature on Carya cathayensis, compared to morphologically similar families Melanconidaceae and Juglanconidaceae. Synnemasporellaceae is proposed to accommodate fungi with synnematous conidiomata, with descriptions of S. toxicodendri on Toxicodendron sylvestre and S. aculeans on Rhus copallina.
    Keywords: Ascomycota ; phylogeny ; Sordariomycetes ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: The recently generated molecular phylogeny for the kingdom Fungi, on which a new classification scheme is based, still suffers from an under representation of numerous apparently asexual genera of microfungi. In an attempt to populate the Fungal Tree of Life, fresh samples of 10 obscure genera of hyphomycetes were collected.\nThese fungi were subsequently established in culture, and subjected to DNA sequence analysis of the ITS and\nLSU\nnrRNA genes to resolve species and generic questions related to these obscure genera. Brycekendrickomyces (Herpotrichiellaceae) is introduced as a new genus similar to, but distinct from Haplographium and Lauriomyces.\nChalastospora is shown to be a genus in the Pleosporales, with two new species, C. ellipsoidea and C. obclavata, to which Alternaria malorum is added as an additional taxon under its oldest epithet, C. gossypii. Cyphellophora eugeniae is newly described in Cyphellophora (Herpotrichiellaceae), and distinguished from other taxa in the genus.\nDictyosporium is placed in the Pleosporales, with one new species, D. streliziae. The genus Edenia, which was recently introduced for a sterile endophytic fungus isolated in Mexico, is shown to be a hyphomycete (Pleosporales) forming a pyronellea-like synanamorph in culture. Thedgonia is shown not to represent an anamorph of Mycosphaerella, but to belong to the Helotiales. Trochophora, however, clustered basal to the Pseudocercospora complex in the Mycosphaerellaceae, as did Verrucisporota. Vonarxia, a rather forgotten genus of hyphomycetes, is shown to belong to the Herpotrichiellaceae and Xenostigmina is confirmed as synanamorph of Mycopappus, and is shown to be allied to Seifertia in the Pleosporales. Dichotomous keys are provided for species in the various genera treated. Furthermore, several families are shown to be polyphyletic within some orders, especially in the Capnodiales, Chaetothyriales and Pleosporales.
    Keywords: Brycekendrickomyces ; Chalastospora ; Cyphellophora ; Dictyosporium ; Edenia ; phylogeny ; taxonomy ; Thedgonia ; Trochophora ; Verrucisporota ; Vonarxia ; Xenostigmina
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: Three species of Mycosphaerella, namely M. eumusae, M. fijiensis, and M. musicola are involved in the Sigatoka disease complex of bananas. Besides these three primary pathogens, several additional species of Mycosphaerella or their anamorphs have been described from Musa. However, very little is known about these taxa, and for the majority of these species no culture or DNA is available for study. In the present study, we collected a global set of Mycosphaerella strains from banana, and compared them by means of morphology and a multi-gene nucleotide sequence data set. The phylogeny inferred from the ITS region and the combined data set containing partial gene sequences of the actin gene, the small subunit mitochondrial ribosomal DNA and the histone H3 gene revealed a rich diversity of Mycosphaerella species on Musa. Integration of morphological and molecular data sets confirmed more than 20 species of Mycosphaerella (incl. anamorphs) to occur on banana. This study reconfirmed the previously described presence of Cercospora apii, M. citri and M. thailandica, and also identified Mycosphaerella communis, M. lateralis and Passalora loranthi on this host. Moreover, eight new species identified from Musa are described, namely Dissoconium musae, Mycosphaerella mozambica, Pseudocercospora assamensis, P. indonesiana, P. longispora, Stenella musae, S. musicola, and S. queenslandica.
    Keywords: Mycosphaerella ; phylogeny ; Sigatoka disease complex ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-12
    Description: Numerous members of Ascomycota and Basidiomycota produce only poorly differentiated arthroconidial asexual morphs in culture. These arthroconidial fungi are grouped in genera where the asexual-sexual connections and their taxonomic circumscription are poorly known. In the present study we explored the phylogenetic relationships of two of these ascomycetous genera, Arthrographis and Arthropsis. Analysis of D1/D2 sequences of all species of both genera revealed that both are polyphyletic, with species being accommodated in different orders and classes. Because genetic variability was detected among reference strains and fresh isolates resembling the genus Arthrographis, we carried out a detailed phenotypic and phylogenetic analysis based on sequence data of the ITS region, actin and chitin synthase genes. Based on these results, four new species are recognised, namely Arthrographis chlamydospora, A. curvata, A. globosa and A. longispora. Arthrographis chlamydospora is distinguished by its cerebriform colonies, branched conidiophores, cuboid arthroconidia and terminal or intercalary globose to subglobose chlamydospores. Arthrographis curvata produced both sexual and asexual morphs, and is characterised by navicular ascospores and dimorphic conidia, namely cylindrical arthroconidia and curved, cashew-nut-shaped conidia formed laterally on vegetative hyphae. Arthrographis globosa produced membranous colonies, but is mainly characterised by doliiform to globose arthroconidia. Arthrographis longispora also produces membranous colonies, but has poorly differentiated conidiophores and long arthroconidia. Morphological variants are described for A. kalrae and our results also revealed that Eremomyces langeronii and A. kalrae, traditionally considered the sexual and asexual morphs of the same species, are not conspecific.
    Keywords: Arthroconidial fungi ; Arthrographis ; Arthropsis ; Eremomyces ; phylogeny ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 27 no. 1, pp. 90-118
    Publication Date: 2024-01-12
    Description: The genus Vermisporium presently accommodates 13 species, 11 of which are associated with leaf spots of eucalypts in the Southern Hemisphere. Vermisporium is chiefly distinguished from Seimatosporium (Amphisphaeriaceae) on the basis of a short exogenous basal appendage, and the absence of a recognisable apical appendage. Due to the increasing importance of these species in native forests, and confusion pertaining to their taxonomy, a revision of the genus was undertaken based on fresh collections and dried herbarium specimens.\nResults from DNA sequence data analyses of the nrDNA-ITS and 28S nrRNA genes for species of Vermisporium indicated the genus to be a synonym of Seimatosporium. New combinations are introduced in Seimatosporium for several species: S. acutum, S. biseptatum, S. brevicentrum, S. obtusum, S. orbiculare, S. verrucisporum and S. walkeri.\nAn updated key to all species occurring on eucalypts is also provided.
    Keywords: Australia ; Eucalyptus ; foliar pathogen ; Seimatosporium ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 21 no. 1, pp. 77-91
    Publication Date: 2024-01-12
    Description: Species of Mycosphaerella and their related anamorphs represent potentially serious foliar pathogens of Eucalyptus. The fungi treated in the present study were isolated from symptomatic Eucalyptus leaves collected in Thailand during June \xe2\x80\x93October 2007. Species were initially identified based on morphological and cultural characteristics. Identifications were confirmed using comparisons of DNA sequence data of the internal transcribed spacers (ITS1, 5.8S nrDNA, ITS2) and the 28S nrDNA (LSU) regions. To help distinguish species of Pseudocercospora, the dataset was expanded by generating partial sequences of the translation elongation factor 1-\xce\xb1 and actin genes. By integrating the morphological and molecular datasets, five new taxa were distinguished, namely Mycosphaerella irregulari, M. pseudomarksii, M. quasiparkii, Penidiella eucalypti and Pseudocercospora chiangmaiensis, while M. vietnamensis represents a new record for Thailand.
    Keywords: Eucalyptus ; Mycosphaerella ; Mycosphaerella leaf disease ; Penidiella ; Pseudocercospora ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-12
    Description: The Teratosphaeriaceae represents a recently established family that includes numerous saprobic, extremophilic, human opportunistic, and plant pathogenic fungi. Partial DNA sequence data of the 28S rRNA and RPB2 genes strongly support a separation of the Mycosphaerellaceae from the Teratosphaeriaceae, and also provide support for the Extremaceae and Neodevriesiaceae, two novel families including many extremophilic fungi that occur on a diversity of substrates. In addition, a multi-locus DNA sequence dataset was generated (ITS, LSU, Btub, Act, RPB2, EF-1\xce\xb1 and Cal) to distinguish taxa in Mycosphaerella and Teratosphaeria associated with leaf disease of Eucalyptus, leading to the introduction of 23 novel genera, \xef\xac\x81ve species and 48 new combinations. Species are distinguished based on a polyphasic approach, combining morphological, ecological and phylogenetic species concepts, named here as the Consolidated Species Concept (CSC). From the DNA sequence data generated, we show that each one of the \xef\xac\x81ve coding genes tested, reliably identify most of the species present in this dataset (except species of Pseudocercospora). The ITS gene serves as a primary barcode locus as it is easily generated and has the most extensive dataset available, while either Btub, EF-1\xce\xb1 or RPB2 provide a useful secondary barcode locus.
    Keywords: Eucalyptus ; multi-locus ; phylogeny ; species concepts ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 22 no. 1, pp. 38-48
    Publication Date: 2024-01-12
    Description: A common leaf spot disease occurring on Eucalyptus cladocalyx and E. lehmannii in the Western Cape Province of South Africa is known from literature to be caused by the fungus Coniothyrium ovatum, which is a pathogen native to several eucalypts in Australia. Recent collections have shown that Australian material identified as C. ovatum is morphologically and phylogenetically distinct from the South African specimens, and that all these taxa would be better accommodated in the genus Teratosphaeria. South African specimens previously identified as C. ovatum were found to represent two species that co-occur in the same leaves and even spots and are described here as T. juvenalis and T. verrucosa. Furthermore, a fresh collection of T. ovata from E. phoenicea in Australia, is distinguished morphologically and phylogenetically from similar, newly described taxa such as T. veloci on E. miniata, and Readeriella dimorpha, which is also placed in Teratosphaeria. Although these leaf pathogens appear to be of minor economic importance, they are morphologically similar to two serious eucalypt canker pathogens, namely T. gauchensis and T. zuluensis, which predominantly cause stem cankers, but could also be found occurring in leaf spots on their own, or in association with some of the other species treated here. Further research is, therefore, required to develop molecular detection techniques for these taxa to enable researchers to rapidly distinguish the minor pathogens from the more serious quarantine pathogens that co-occur on leaves.
    Keywords: Colletogloeopsis ; Coniothyrium ; Eucalyptus ; Kirramyces ; Mycosphaerella ; Mycosphaerella leaf disease ; Readeriella ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Naturalis Biodiversity Center
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 43 no. 1, pp. 90-185
    Publication Date: 2024-01-12
    Description: The genus Neocosmospora (Fusarium solani species complex) contains saprobes, plant endophytes \nand pathogens of major economic significance as well as opportunistic animal pathogens. Advances in biological \nand phylogenetic species recognition revealed a rich species diversity which has largely remained understudied. \nMost of the currently recognised species lack formal descriptions and Latin names, while the taxonomic utility of old \nnames is hampered by the lack of nomenclatural type specimens. Therefore, to stabilise the taxonomy and nomenclature of these important taxa, we examined type specimens and representative cultures of several old names by \nmeans of morphology and phylogenetic analyses based on rDNA (ITS and LSU), rpb2 and tef1 sequences. Sixtyeight species are accepted in Neocosmospora, 29 of them described herein as new; while 13 new combinations \nare made. Eleven additional phylogenetic species are recognized, but remain as yet undescribed. Lectotypes are \nproposed for eight species, seven species are epitypified and two species are neotypified. Notes on an additional \n17 doubtful or excluded taxa are provided.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Fusarium ; new taxa ; systematics ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Persoonia - Molecular Phylogeny and Evolution of Fungi vol. 22 no. 1, pp. 56-62
    Publication Date: 2024-01-12
    Description: The fungal pathogen Phoma clematidina is used as a biological agent to control the invasive plant species Clematis vitalba in New Zealand. Research conducted on P. clematidina as a potential biocontrol agent against,C. vitalba, led to the discovery of two perithecial-forming strains. To assess the diversity of P. clematidina and to clarify the teleomorph-anamorph relationship, phylogenetic analyses of 18 P. clematidina strains, reference strains representing the Phoma sections in the Didymellaceae and strains of related species associated with Clematis were conducted. Partial sequences of the ITS1, ITS2 and 5.8S rRNA gene, the \xc3\x9f-tubulin gene and 28S rRNA gene were used to clarify intra- and inter-species relationships. These analyses revealed that P. clematidina resolves into three well-supported clades which appear to be linked to differences in host specificity. Based on these findings, Didymella clematidis is newly described and the descriptions of P. clematidina and D. vitalbina are amended.
    Keywords: Ascochyta vitalbae ; \xc3\x9f-tubulin ; Clematis ; Didymella clematidis ; Didymella vitalbina ; DNA phylogeny ; ITS ; LSU ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...