GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-19
    Description: We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on-shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low-angle top-to-the-west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse-grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian-early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike-slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn-depositional tectonic activity are marked by well-exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene-Quaternary times: (1) Serravallian low-angle normal faulting; (2) middle Tortonian high-angle syn-sedimentary normal faulting; (3) Messinian-Quaternary high-angle normal faulting. Extensional tectonics controlled the exhumation of high-P/low-T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW-ESE stretching direction (present-day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DSl show a post-Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south-eastward and rotated clockwise as a part of the Calabria-Peloritani terrane.
    Description: Published
    Description: 147-168
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; structural geology ; syn-sedimentary tectonics ; Amantea ; Calabria ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1x1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms only when the ratio between obstacles’ distance and thickness of the cover is greater than 10. Finally, when a belt collides with an obstacle in the foreland oblique to the shortening direction the outer front displays rotations opposite in sign to oroclinal-type rotations, whereas the internal fronts seem to assume an "oroclinal type" rotational pattern. Furthermore rotation is easier in laterally unconfined models, i.e. when the wedge can "escape" laterally. The results from our models may be useful when compared to paleomagnetic rotations detected in natural arcs. In these cases, our results may allow for better understanding the tectonic setting controlling the genesis of curved mountain fronts, as is the case of the Gela Nappe of Sicily we compare with some of our models.
    Description: Published
    Description: 633-654
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonic rotations ; physical models ; arcuate belts ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  “An edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.”
    Publication Date: 2017-04-04
    Description: We report on paleomagnetic directions gathered from 33 sites from (mostly Holocene) volcanics from Stromboli, loosely dated at present by few K/Ar and 14C ages. In order to provide dating, the paleomagnetic directions were compared to the Holocene paleosecular variation of the geomagnetic field for the Mediterranean region, derived from direct geomagnetic observations and several archeomagnetic-paleomagnetic data sets. Petrochemical analyses from the paleomagnetic specimens revealed that each Holocene eruptive cycle of Stromboli was characterized by peculiar chemical characteristics. We suggest that before the 20th century AD paroxysms, powerful spatter-forming eruption(s) occurred during the 17th century AD, followed by three centuries of less energetic eruptions, when spattering was limited to the summit cones. A robust data set (4 sites, 52 samples) from the S. Bartolo flow, partially buried below the Stromboli village, constrains its age to 360 BC to 7 AD, in Greek-Roman times. The ca. 6200 years BP age inferred for a scoria exposed below a characteristic pyroclastic succession suggests its correlation with the Secche di Lazzaro pyroclastics, a major phreatomagmatic eruption occurring during the 6th millennium BP, synchronous with the major volcanotectonic collapse of the Sciara del Fuoco. Ages were provided for many lavas from the Neostromboli sequence (including the Labronzo, Nel Cannestrà, and Ginostra flows), indicating that huge effusive activity from lateral fissures fed by an evolving magma chamber occurred in the 6200–8000 years BP time window. The absence of volcanics with ages comprised between the 6th millennium BP and 400 BC implies a puzzling three-millennia "eruption gap" at Stromboli.
    Description: Published
    Description: B09101
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Many of the mountain belts displaying a curved shape are "oroclines", i.e. are produced after progressive bending of an originally straight fold and thrust belt. The bending process was previously explained as a consequence of several possible events taking place in the crustal orogenic wedge, such as occurrence of obstacles, non-coaxial deformation, and mouvements on wrench faults. Recent paleomagnetic results from the northern Apenninic Arc document that this belt is properly an orocline and results from Late Messinian-Early Pliocene bending of a Messinian straight belt-foredeep system. Tomographic images in turn show the presence of a high-velocity body, interpreted as subducted slab, in the upper mantle beneath the northern Apennines, between 35 and 670 km depth. Down to 100 km, this body displays an arcuate shape which closely mirrors the geological outlines, while it appears to be straight (and parallel to the Messinian pre-rotated belt) at depth. We explore here the possibility that the arcuate shape of the northern Apennines is a consequence, closely following in time, on much deeper processes than previously suggested, i.e. the lateral bending of the subducting Adriatic plate.
    Description: Published
    Description: 53-64
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; seismic tomography ; Northern Apennines ; orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present the results of a paleomagnetic study carried out on 32 sites from mainly Messinian clayey sediments distributed throughout the external Umbria-Marche-Romagna Arc (UMRA). These data, together with published results from coeval sediments, demonstrate that this arc is an orocline in its central northern sector. Bending, not well constrained in time, was due to about 15° clockwise rotations of the central part of this arc and to counterclockwise rotations farther north. In this latter area, post-Messinian counterclockwise rotations are of the same amplitude as those calculated for some classic Mesozoic paleomagnestic sections in northern Umbria, suggesting a Plio-Pleistocene age for the rotations reported from the older sequences.
    Description: Published
    Description: 3153-3166
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonic rotations ; arcuate belt ; northern Apennines ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The southernmost segment of the Andes of southern Patagonia and Tierra del Fuego forms a ~700 km long orogenic re-entrant with an interlimb angle of ~90° known as Patagonian orocline. No reliable paleomagnetic evidence has been gathered so far to assess whether this great orogenic bend is a primary arc formed over an articulated paleomargin, or is due to bending of a previously less curved (or rectilinear) chain. Here we report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) study carried out on 22 sites (298 oriented cores), predominantly sampled in Eocene marine clays from the external Magallanes belt of Tierra del Fuego. Five sites (out of six giving reliable paleomagnetic results) containing magnetite and subordinate iron sulphides yield a positive fold test at the 99% significance level, and document no significant rotation since ~50 Ma. Thus, the Patagonian orocline is either a primary bend, or an orocline formed after Cretaceous–earliest Tertiary rotations. Our data imply that the opening of the Drake Passage between South America and Antarctica (probably causing the onset of Antarctica glaciation and global climate cooling), was definitely not related to the formation of the Patagonian orocline, but was likely the sole consequence of the 32±2 Ma Scotia plate spreading. Well-defined magnetic lineations gathered at 18 sites from the Magallanes belt are sub-parallel to (mostly E–W) local fold axes, while they trend randomly at two sites from the Magallanes foreland. Our and previous AMS data consistently show that the Fuegian Andes were characterized by a N–S compression and northward displacing fold–thrust sheets during Eocene–early Miocene times (50–20 Ma), an unexpected kinematics considering coeval South America–Antarctica relative motion. Both paleomagnetic and AMS data suggest no significant influence from the E–W left-lateral Magallanes–Fagnano strike–slip fault system (MFFS), running a few kilometres south of our sampling sites. We thus speculate that strike–slip fault offset in the Fuegian Andes may range in the lower bound values (~20 km) among those proposed so far. In any case our data exclude any influence of strike–slip tectonics on the genesis of the great orogenic bend called Patagonian orocline.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonics ; Patagonian orocline ; Fuegian Andes ; Drake Passage ; Magallanes belt ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: A new high-resolution Apparent Polar Wander Path (APWP) segment has been obtained from the magnetostratigraphy of four Kimmeridgian to Lower Aptian sections in the Northern Apennines (Italy). The use of paleomagnetic data for determination of the Adria APWP was hampered by the large local rotations linked to Apennine tectonics, characterized by folds and thrusts developed during the Neogene. To overcome this problem, we have computed relative rotations between time overlapping sections and realigned them in a common declination reference frame (namely the Bosso section). We synthesized a new high-resolution 150 to 125 Ma APWP for Adria, which has a similar shape to the time-equivalent segment of the synthetic APWP of Africa of Besse and Courtillot [J., Besse, V., Courtillot, Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr, J. Geophys. Res. 107(B11) (2002), doi:10.1029/200JB000050]. A 26° clockwise rotation of our combined Adria APWP places it in almost perfect overlap with African data of same age, confirming that the Adria promontory moved coherently with Africa during this time span, whereas the counterclockwise rotation of Adria with respect to Africa was introduced later, most probably during Apennines orogenesis. Finally, we discuss in relation with worldwide plate evolution the peculiar shape of our APWP, which displays a hairpin turn during Berriasian time, and dates the main Late Jurassic/Early Cretaceous change in plate motion at around anomaly M16.
    Description: Published
    Description: 329-342
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; Apparent Polar Wander Path ; magnetostratigraphy ; Adria ; Italy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The southernmost segment of the Andes of southern Patagonia and Tierra del Fuego forms a ∼700 km long orogenic re-entrant with an interlimb angle of ∼90° known as Patagonian orocline. No reliable paleomagnetic evidence has been gathered so far to assess whether this great orogenic bend is a primary arc formed over an articulated paleomargin, or is due to bending of a previously less curved (or rectilinear) chain. Here we report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) study carried out on 22 sites (298 oriented cores), predominantly sampled in Eocene marine clays from the external Magallanes belt of Tierra del Fuego. Five sites (out of six giving reliable paleomagnetic results) containing magnetite and subordinate iron sulphides yield a positive fold test at the 99% significance level, and document no significant rotation since ∼50 Ma. Thus, the Patagonian orocline is either a primary bend, or an orocline formed after Cretaceous–earliest Tertiary rotations. Our data imply that the opening of the Drake Passage between South America and Antarctica (probably causing the onset of Antarctica glaciation and global climate cooling), was definitely not related to the formation of the Patagonian orocline, but was likely the sole consequence of the 32±2 Ma Scotia plate spreading. Well-defined magnetic lineations gathered at 18 sites from the Magallanes belt are sub-parallel to (mostly E–W) local fold axes, while they trend randomly at two sites from the Magallanes foreland. Our and previous AMS data consistently show that the Fuegian Andes were characterized by a N–S compression and northward displacing fold–thrust sheets during Eocene–early Miocene times (50–20 Ma), an unexpected kinematics considering coeval South America–Antarctica relative motion. Both paleomagnetic and AMS data suggest no significant influence from the E–W left-lateral Magallanes–Fagnano strike–slip fault system (MFFS), running a few kilometres south of our sampling sites. We thus speculate that strike–slip fault offset in the Fuegian Andes may range in the lower bound values (∼20 km) among those proposed so far. In any case our data exclude any influence of strike–slip tectonics on the genesis of the great orogenic bend called Patagonian orocline.
    Description: Published
    Description: 273–286
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonics ; Patagonian orocline ; Fuegian Andes ; Drake Passage ; Magallanes belt ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-04
    Description: Paleomagnetism has played an important role in the development of geodynamic models for the Italian peninsula. Paleomagnetic data from this area have been increasingly reported since the late 1960s, placing important constraints on geodynamics. A brief outline of the main concepts underlying a paleomagnetic study is provided in the first part of this paper. We also discuss the criteria for the assessment of the reliability of paleomagnetic data. Finally, the data collected over the past 25 years in peninsular and insular Italy are synthetically reviewed, discussing the main implications for the geodynamic evolution of the Tyrrhenian í Apennines í foreland system.
    Description: JCR Journal
    Description: open
    Keywords: paleomagnetism ; geodynamics ; Italy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1872947 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In the past few years, a wealth of paleomagnetic data gathered from Neogene sediments consistently showed that since ca. 10 Ma the Calabria terrane coherently drifted ~500 km ESE-ward from the Sardinian margin, and rotated 15°–20° clockwise (CW) as a rigid microplate between 2 and 1 Ma. Here we report on a high-resolution paleomagnetic investigation of the Crotone forearc basin of northern Calabria. The integrated calcareous plankton biostratigraphy indicates early Pliocene (Zanclean) to late early Pleistocene (Calabrian) ages for 29 successful paleomagnetic sites and/or sections. Unexpectedly, four domains undergoing distinct rotations are documented. Two blocks have undergone a CW rotation statistically undistinguishable, for both timing and magnitude, from the rigid Calabria rotation documented in the past. Two additional ~10-km-wide blocks yielded a 30.8° ± 22.5° and 32.0° ± 9.2° post–1.2 Ma counterclockwise rotation, likely due to left-lateral shear along two NW-SE fault zones. We infer that since advanced early Pleistocene times, after the end of the uniform CW rotation, left-lateral strike-slip tectonics disrupted the Calabria terrane, overwhelming a widespread extensional regime accompanying the Calabria drift since late Miocene times. Seismological evidence reveals that only the southern part of the Ionian slab subducting below Calabria is continuous, while beneath northern Calabria a slab window between 100 and 200 km depth is apparent. We suggest that the partial breakoff of the Ionian slab after 1 Ma induced the fragmentation of the Calabria wedge, and that strike-slip faults from the Crotone basin decoupled “inactive” northern Calabria from southern Calabria, still drifting towards the trench.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabria ; Crotone basin ; paleomagnetism ; rotations ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...