GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Uncoupling protein 2 ; obesity ; genetics ; insulin resistance ; amino acid polymorphism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recently, a gene encoding a novel human uncoupling protein, designated UCP2, was discovered. The murine UCP2 was mapped to a region on mouse chromosome 7 which in several models has been shown to be linked to obesity and hyperinsulinaemia. Single strand conformation polymorphism (SSCP) analysis and direct sequencing of the coding region of the UCP2 gene in 35 obese Caucasian NIDDM patients of Danish ancestry revealed one nucleotide substitution, replacing an alanine with a valine at codon 55. The amino acid polymorphism was present in 24 of the 35 (69 %) examined subjects. The allelic frequency of the A/V55 variant was 48.3 % (95 % CI: 42.5–54.1 %) among 144 subjects with juvenile onset obesity, 45.6 % (40.5–50.7 %) among 182 subjects randomly selected at the draft board examination, and 45.5 % (37.1–53.9 %) among lean control subjects selected from the same study cohort. Within these cohorts there were no differences in BMI values at different ages among wild-type carriers and A/V55 carriers. In a population-based sample of 369 young healthy Caucasians the variant showed no association with alterations in BMI, waist-to-hip ratio, fat mass or weight gain during childhood or adolescence. The A/V55 polymorphism was not related to alterations in fasting values of serum insulin and C-peptide or to an impaired insulin sensitivity index. We conclude that genetic variability in the human UCP2 gene is not a common factor contributing to NIDDM in obese Danish Caucasian subjects and the common A/V55 amino acid polymorphism of the gene is not implicated in the pathogenesis of juvenile or maturity onset obesity or insulin resistance in Caucasians. [Diabetologia (1997) 40: 1227–1230]
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Non-insulin-dependent diabetes mellitus ; insulin resistance ; skeletal muscle glycogen synthase gene ; association ; Pima Indians
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Skeletal muscle glycogen synthase (encoded by GYS1 on chromosome 19ql3.3) is the rate-limiting enzyme in insulin-mediated non-oxidative glucose disposal. Our previous studies have demonstrated an impairment of insulin-stimulated GYS1 activities in insulin-resistant Pima Indians, and associations of non-insulin-dependent diabetes mellitus (NIDDM) with the GYS1 locus were reported recently in Finnish and Japanese populations. We have performed linkage and association analyses of GYS1 and seven additional DNA markers on 19q with NIDDM, and with parameters of insulin action in the Pima Indians. We have found a significant association of NIDDM with GYS1 genotypes (p=0.009), and with common GYS1 alleles (p=0.022) in the Pima Indians. We have performed a detailed comparative analysis of the GYS1 gene, mRNA, and protein product in insulin-sensitive and insulin-resistant Pima Indians. No mutations in GYS1 coding sequences were detected; nor did we find alterations of GYS1 mRNA expression or of its basal enzymatic activity in insulin-resistant Pima Indians. These results contrasted with a 25% reduction of immunoreactive protein in insulin-resistant subjects as detected by Western blotting with an antibody specific for the C-terminal end of GYS1 (t-test p=0.024; Wilcoxon's rank-sum test, p=0.04). Because no mutations were detected in the DNA encoding this epitope, the difference in immunoreactivity may reflect post-translational modification(s) of the protein rather than a difference in the gene itself, or it could have occurred by chance. We conclude that our data do not indicate alterations in the GYS1 gene as the cause for the observed association, and that a different locus near GYS1 may be the contributing genetic element.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Keywords Non-insulin-dependent diabetes mellitus ; insulin resistance ; skeletal muscle glycogen synthase gene ; association ; Pima Indians.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Skeletal muscle glycogen synthase (encoded by GYS1 on chromosome 19q13.3) is the rate-limiting enzyme in insulin-mediated non-oxidative glucose disposal. Our previous studies have demonstrated an impairment of insulin-stimulated GYS1 activities in insulin-resistant Pima Indians, and associations of non-insulin-dependent diabetes mellitus (NIDDM) with the GYS1 locus were reported recently in Finnish and Japanese populations. We have performed linkage and association analyses of GYS1 and seven additional DNA markers on 19q with NIDDM, and with parameters of insulin action in the Pima Indians. We have found a significant association of NIDDM with GYS1 genotypes (p = 0.009), and with common GYS1 alleles (p = 0.022) in the Pima Indians. We have performed a detailed comparative analysis of the GYS1 gene, mRNA, and protein product in insulin-sensitive and insulin-resistant Pima Indians. No mutations in GYS1 coding sequences were detected; nor did we find alterations of GYS1 mRNA expression or of its basal enzymatic activity in insulin-resistant Pima Indians. These results contrasted with a 25 % reduction of immunoreactive protein in insulin-resistant subjects as detected by Western blotting with an antibody specific for the C-terminal end of GYS1 (t -test p = 0.024; Wilcoxon's rank-sum test, p = 0.04). Because no mutations were detected in the DNA encoding this epitope, the difference in immunoreactivity may reflect post-translational modification(s) of the protein rather than a difference in the gene itself, or it could have occurred by chance. We conclude that our data do not indicate alterations in the GYS1 gene as the cause for the observed association, and that a different locus near GYS1 may be the contributing genetic element. [Diabetologia (1996) 39: 314–321]
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...