GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-21
    Description: Electricity production by hydropower is negatively affected by drought. To understand and quantify risks of less than normal streamflow for hydroelectricity production (HP) at the global scale, we developed an HP model that simulates time series of monthly HP worldwide and thus enables analyzing the impact of drought on HP. The HP model is based on a new global hydropower database (GHD), containing 8,716 geo‐localized plant records, and on monthly streamflow values computed by the global hydrological model WaterGAP with a spatial resolution of 0.5°. The GHD includes 44 attributes and covers 91.8% of the globally installed capacity. The HP model can reproduce HP trends, seasonality, and interannual variability that was caused by both (de)commissioning of hydropower plants and hydrological variability. It can also simulate streamflow drought and its impact on HP reasonably well. Global risk maps of HP reduction were generated for both 0.5° grid cells and countries, revealing that 67 out of the 134 countries with hydropower suffer, in 1 out of 10 years, from a reduction of more than 20% of mean annual HP and 18 countries from a reduction of more than 40%. The developed HP model enables advanced assessments of drought impacts on hydroelectricity at national to international levels.
    Description: Key Points: A new global hydropower database and a hydroelectricity production model were developed and validated The model simulates the impact of streamflow drought on monthly hydroelectricity production worldwide The 1‐in‐10 year risk of hydroelectricity production reduction due to drought is assessed at both 0.5° grid cell and country levels
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: MOST, National Key Research and Development Program of China (973 Program) http://dx.doi.org/10.13039/501100012166
    Description: National Natural Science Foundation of China (NSFC) http://dx.doi.org/10.13039/501100001809
    Keywords: 333.914 ; drought ; global hydrological model ; global hydropower database ; hydropower ; hydropower production
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...