GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • cationic lipids  (1)
  • follicular targeting  (1)
  • 1
    ISSN: 1573-904X
    Keywords: site-specific drug delivery ; transfollicular route ; adapalene ; in vitro cutaneous penetration ; follicular targeting ; poly(lactide-co-glycolide) microspheres ; rhino mouse model ; in vivo cutaneous distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In order to improve the therapeutic index of adapalene, a new drug under development for the treatment of acne, site-specific delivery to the hair follicles using 50:50 poly(DL-lactic-co-glycolic acid) microspheres as particulate carriers was investigated in vitro and in vivo. The percutaneous penetration pathway of the microspheres was shown to be dependent on their mean diameter. Thus, after topical application onto hairless rat or human skin, adapalene-loaded microspheres (5-µm diameter) were specifically targeted to the follicular ducts and did not penetrate via the stratum corneum. The in vitro release of adapalene from the microspheres into artificial sebum at 37°C was controlled and faster than the in vivo sebum excretion in humans. Aiming to reduce either the applied dose of drug or the frequency of administration, different formulations of adapalene-loaded microspheres were evaluated in vivo in the rhino mouse model. A dose-related comedolytic activity of topical formulations of adapalene-loaded microspheres was observed in this model. Furthermore, by applying a site-specific drug delivery system (0.1% adapalene) every other day or by administering a 10-fold less concentrated targeted formulation (0.01%) every day, a pharmacological activity equivalent to a daily application of an aqueous gel containing drug crystals (0.1% adapalene) was observed. Since an aqueous gel containing 10% adapalene-loaded microspheres was not irritating in a rabbit skin irritancy test, this formulation was applied onto forearms of human volunteers. Site-specific drug delivery was further evidenced by follicular biopsy. These results support the view that follicular drug targeting using 5-µm polymeric microspheres may represent a promising therapeutic approach for the treatment of pathologies associated with pilosebaceous units.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: gene transfer ; airways ; cationic lipids ; surface charge ; co-lipid content ; topology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. Cationic lipids are capable of transferring foreign genes to the pulmonary epithelium in vivo. It is becoming increasingly clear that factors other than lipid molecular structure also influence efficiency of delivery using cationic lipid systems. This study is aimed at evaluating the effect of formulation variables such as cationic lipid structure, cationic lipid/DNA ratio, particle size, co-lipid content and plasmid topology on transgene expression in the lung. Methods. The effect of varying the surface and colloidal properties of cationic lipid-based gene delivery systems was assessed by intratracheal instillation into rats. An expression plasmid encoding chloramphenicol acetyl transferase (CAT) was used to measure transgene expression. Results. Cationic lipid structure, cationic lipid/DNA ratio, particle size, co-lipid content and topology of the plasmid, were found to significantly affect transgene expression. Complexation with lipids was found to have a protective effect on DNA integrity in bronchoalveolar lavage fluid (BALF). DNA complexed with lipid showed enhanced persistence in rat lungs as measured by quantitative polymerase chain reaction. Conclusions. Fluorescence microscopy analysis indicated that the instilled formulation reaches the lower airways and alveolar region. Data also suggests cationic lipid-mediated gene expression is primarily localized in the lung parenchyma and not infiltrating cells isolated from the BALF.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...