GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: site-specific drug delivery ; transfollicular route ; adapalene ; in vitro cutaneous penetration ; follicular targeting ; poly(lactide-co-glycolide) microspheres ; rhino mouse model ; in vivo cutaneous distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In order to improve the therapeutic index of adapalene, a new drug under development for the treatment of acne, site-specific delivery to the hair follicles using 50:50 poly(DL-lactic-co-glycolic acid) microspheres as particulate carriers was investigated in vitro and in vivo. The percutaneous penetration pathway of the microspheres was shown to be dependent on their mean diameter. Thus, after topical application onto hairless rat or human skin, adapalene-loaded microspheres (5-µm diameter) were specifically targeted to the follicular ducts and did not penetrate via the stratum corneum. The in vitro release of adapalene from the microspheres into artificial sebum at 37°C was controlled and faster than the in vivo sebum excretion in humans. Aiming to reduce either the applied dose of drug or the frequency of administration, different formulations of adapalene-loaded microspheres were evaluated in vivo in the rhino mouse model. A dose-related comedolytic activity of topical formulations of adapalene-loaded microspheres was observed in this model. Furthermore, by applying a site-specific drug delivery system (0.1% adapalene) every other day or by administering a 10-fold less concentrated targeted formulation (0.01%) every day, a pharmacological activity equivalent to a daily application of an aqueous gel containing drug crystals (0.1% adapalene) was observed. Since an aqueous gel containing 10% adapalene-loaded microspheres was not irritating in a rabbit skin irritancy test, this formulation was applied onto forearms of human volunteers. Site-specific drug delivery was further evidenced by follicular biopsy. These results support the view that follicular drug targeting using 5-µm polymeric microspheres may represent a promising therapeutic approach for the treatment of pathologies associated with pilosebaceous units.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 14 (1997), S. 853-859 
    ISSN: 1573-904X
    Keywords: non-viral gene delivery ; plasmid ; cationic liposomes ; formulation ; transfection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Gene delivery systems are designed to control the location of administered therapeutic genes within a patient's body. Successful in vivo gene transfer may require (i) the condensation of plasmid and its protection from nuclease degradation, (ii) cellular interaction and internalization of condensed plasmid, (iii) escape of plasmid from endosomes (if endocytosis is involved), and (iv) plasmid entry into cell nuclei. Expression plasmids encoding a therapeutic protein can be, for instance, complexed with cationic liposomes or micelles in order to achieve effective in vivo gene transfer. A thorough knowledge of pharmaceutics and drug delivery, bio-engineering, as well as cell and molecular biology is required to design optimal systems for gene therapy. This mini-review provides a critical discussion on cationic lipid-based gene delivery systems and their possible uses as pharmaceuticals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: pulmonary gene medicine ; plasmid ; aerosol ; ultrasonic nebulization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. This study relates to the development of gene therapies for the treatment of lung diseases. It describes for the first time the use of ultrasonic nebulization for administration of plasmid/lipid complexes to the lungs to transfect lung epithelial cells. Methods. Plasmid complexed to cationic liposomes at a specific stoichiometric ratio was nebulized using an ultrasonic nebulizer. We assessed: (i) the stability of plasmid and plasmid/lipid complexes to ultrasonic nebulization, (ii) the in vitro activity of plasmid in previously nebulized plasmid/lipid complex, (iii) the in vivo transgene expression in lungs following intratracheal instillation of nebulized plasmid/lipid formulations compared to un-nebulized complexes, (iv) the emitted dose from an ultrasonic nebulizer using plasmid/lipid complexes of different size, and (v) the transgene expression in lungs following oral inhalation of aerosolized plasmid/lipid complex generated using an ultrasonic nebulizer. Results. Integrity of plasmid formulated with cationic lipids, and colloidal stability of the plasmid/lipid complex were maintained during nebulization. In contrast, plasmid alone formulated in 10% lactose was fragmented during nebulization. The efficiency of transfection of the complex before and after nebulization was comparable. Nebulization produced respirable aerosol particles. Oral exposure of rodents for 10 minutes to aerosol produced from the ultrasonic nebulizer resulted in transgene expression in lungs in vivo. Conclusions. The performance characteristics of the ultrasonic nebulizer with our optimized plasmid/lipid formulations suggests that this device can potentially be used for administering gene medicines to the airways in clinical settings for the treatment of respiratory disorders.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...