GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Stable isotopes  (2)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 59 (2009): 193-206, doi:10.1016/j.marpolbul.2009.02.022.
    Description: Identifying patterns and drivers of natural variability in populations is necessary to gauge potential effects of climatic change and the expected increases in commercial activities in the Arctic on communities and ecosystems. We analyzed growth rates and shell geochemistry of the circumpolar Greenland smooth cockle, Serripes groenlandicus, from the southern Barents Sea over almost 70 years between 1882 and 1968. The datasets were calibrated via annually-deposited growth lines, and growth, stable isotope (δ18O, δ13C), and trace elemental (Mg, Sr, Ba, Mn) patterns were linked to environmental variations on weekly to decadal scales. Standardized growth indices revealed an oscillatory growth pattern with a multi-year periodicity, which was inversely related to the North Atlantic Oscillation Index (NAO), and positively related to local river discharge. Up to 60% of the annual variability in the Ba/Ca could be explained by variations in river discharge at the site closest to the rivers, but the relationship disappeared at a more distant location. Patterns of δ18O, δ13C, and Sr/Ca together provide evidence that bivalve growth ceases at elevated temperatures during the fall and recommences at the coldest temperatures in the early spring, with the implication that food, rather than temperature, is the primary driver of bivalve growth. The multi-proxy approach of combining the annually integrated information from the growth results and higher resolution geochemical results yielded a robust interpretation of biophysical coupling in the region over temporal and spatial scales. We thus demonstrate that sclerochronological proxies can be useful retrospective analytical tools for establishing a baseline of ecosystem variability in assessing potential combined impacts of climatic change and increasing commercial activities on Arctic communities.
    Description: We gratefully acknowledge past financial support from Norsk Hydro, and continuing financial support from StatoilHydro, the Norwegian Research Council, and the Howard Hughes Medical Institute through Bates College. This publication was made possible, in part, by NIH Grant Number P20 RR-016463 from the INBRE Program of the National Center for Research Resources.
    Keywords: Arctic ; Barents Sea ; Benthic community ; Bivalve growth ; Climate oscillation ; Environmental forcing ; North Atlantic Oscillation ; White Sea ; Sclerochronology ; Serripes groenlandicus ; Shell geochemistry ; Stable isotopes ; Trace element ratios
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 310 (2006): 1-14, doi:10.3354/meps310001.
    Description: We assessed the digestibility and utilization of ice algae and phytoplankton by the shallow, subtidal benthos in Ny Ålesund (Kongsfjord) on Svalbard (79°N, 12°E) using chlorophyll a (chl a), essential fatty acids (EFAs) and stable isotopes as tracers of food consumption and assimilation. Intact benthic communities in sediment cores and individuals of dominant benthic taxa were given ice algae, phytoplankton, 13C-enriched ice algae or a no food addition control for 19 to 32 d. Ice algae and phytoplankton had significantly different isotopic signatures and relative concentrations of fatty acids. In the food addition cores, sediment concentrations of chl a and the EFA C20:5(n-3) were elevated by 80 and 93%, respectively, compared to the control after 12 h, but decreased to background levels by 19 d, suggesting that both ice algae and phytoplankton were rapidly consumed. Whole core respiration rates in the ice algae treatments were 1.4 times greater than in the other treatments within 12 h of food addition. In the ice algae treatment, both suspension and deposit feeding taxa from 3 different phyla (Mollusca, Annelida and Sipuncula) exhibited significant enrichment in δ13C values compared to the control. Deposit feeders (15% uptake), however, exhibited significantly greater uptake of the 13C-enriched ice algae tracer than suspension feeders (3% uptake). Our study demonstrates that ice algae are readily consumed and assimilated by the Arctic benthos, and may be preferentially selected by some benthic species (i.e. deposit feeders) due to their elevated EFA content, thus serving as an important component of the Arctic benthic food web.
    Description: Funding for this study came from the National Science Foundation (Grant numbers OPP- 0514115 to W.G.A.; OPP-0222410 to L.M.C.; OPP-0222408 to M.-Y.S.; OPP0222500 to G.R.L.), the Norwegian Research Council (Grant number 151815-720 to M.L.C.), the Howard Hughes Medical Institute through Bates College and the Maine Marine Research Fund.
    Keywords: Ice algae ; Phytoplankton ; Food quality ; Arctic benthos ; Climate change ; Stable isotopes ; Essential fatty acids ; Svalbard
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...