GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Organic carbon  (3)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 124(8), (2019): 2582-2594, doi: 10.1029/2019JG005107.
    Description: To assess the influences of carbon sources and transport processes on the 14C age of organic matter (OM) in continental margin sediments, we examined a suite of samples collected along a river‐shelf‐deep ocean transect in the East China Sea (ECS). Ramped pyrolysis‐oxidiation was conducted on suspended particulate matter in the Yangtze River and on surface sediments from the ECS shelf and northern Okinawa Trough. 14C ages were determined on OM decomposition products within different temperature windows. These measurements suggest that extensive amounts of pre‐old (i.e., millennial age) organic carbon (OC) are subject to degradation within and beyond the Yangtze River Delta, and this process is accompanied by an exchange of terrestrial and marine OM. These results, combined with fatty acid concentration data, suggest that both the nature and extent of OM preservation/degradation as well as the modes of transport influence the 14C ages of sedimentary OM. Additionally, we find that the age of (thermally) refractory OC increases during across‐shelf transport and that the age offset between the lowest and highest temperature OC decomposition fractions also increases along the shelf‐to‐trough transect. Amplified interfraction spread or 14C heterogeneity is the greatest in the Okinawa Trough. Aged sedimentary OM across the transect may be a consequence of several reasons including fossil OC input, selective degradation of younger OC, hydrodynamic sorting processes, and aging during lateral transport. Consequently, each of them should be considered in assessing the 14C results of sedimentary OM and its implications for the carbon cycle and interpretation of sedimentary records.
    Description: This study was supported by Doc. Mobility Fellowship (P1EZP2_159064; R. B.) from the Swiss National Science Foundation (SNSF). This study was also supported by SNF “CAPS‐LOCK” project 200021_140850 (T. I. E.), by the National Natural Science Foundation of China (NSFC; grants 41520104009 and 41630966, M. Z.), and by the “111” project (B13030). We are grateful for support of the NOSAMS staff in the execution of this project. We also appreciate the assistance from Yushuang Zhang (Ocean University of China) at NOSAMS and members of the Laboratory for Ion Beam Physics at ETH Zurich for AMS measurements. We acknowledge Lei Xing, Haidong Zhang, Guodong Song, Meng Yu, Yonghao Jia, and Shanshan Duan (Ocean University of China) for sampling assistance on the cruises. Assistance at sea by the crews of R/V Dongfanghong II and R/V Hakuhu Maru is also acknowledged. Readers can access or find the data from figures and tables in the supporting information.
    Keywords: Radiocarbon ; Carbon cycle ; Sediments ; Organic carbon ; Hydrodynamic processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Druffel, E., Beaupre, S., Grotheer, H., Lewis, C., McNichol, A., Mollenhauer, G., & Walker, B. Marine organic carbon and radiocarbon – present and future challenges. Radiocarbon, (2022): 1-17, https://doi.org/10.1017/RDC.2021.105.
    Description: We discuss present and developing techniques for studying radiocarbon in marine organic carbon (C). Bulk DOC (dissolved organic C) Δ14C measurements reveal information about the cycling time and sources of DOC in the ocean, yet they are time consuming and need to be streamlined. To further elucidate the cycling of DOC, various fractions have been separated from bulk DOC, through solid phase extraction of DOC, and ultrafiltration of high and low molecular weight DOC. Research using 14C of DOC and particulate organic C separated into organic fractions revealed that the acid insoluble fraction is similar in 14C signature to that of the lipid fraction. Plans for utilizing this methodology are described. Studies using compound specific radiocarbon analyses to study the origin of biomarkers in the marine environment are reviewed and plans for the future are outlined. Development of ramped pyrolysis oxidation methods are discussed and scientific questions addressed. A modified elemental analysis (EA) combustion reactor is described that allows high particulate organic C sample throughput by direct coupling with the MIniCArbonDAtingSystem.
    Keywords: CSRA ; Dissolved organic carbon ; Methodology ; Organic carbon ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): D13303, doi:10.1029/2011JD017153.
    Description: Carbon isotopic signatures (δ13C, Δ14C) of aerosol particulate matter total organic carbon (TOC) and operationally defined organic carbon (OC) components were measured in samples from two background sites in the eastern U.S. TOC and water-soluble OC (WSOC) δ13C values (−27 to −24‰) indicated predominantly terrestrial C3 plant and fossil derived sources. Total solvent extracts (TSE) and their aliphatic, aromatic, and polar OC components were depleted in δ13C (−30 to −26‰) relative to TOC and WSOC. Δ14C signatures of aerosol TOC and TSE (−476 to +25‰) suggest variable fossil contributions (~5–50%) to these components. Aliphatic OC while comprising a small portion of the TOC (〈1%), was dominated by fossil-derived carbon (86 ± 3%), indicating its potential utility as a tracer for fossil aerosol OC inputs. In contrast, aromatic OC contributions (〈1.5%) contained approximately equal portions contemporary (52 ± 8%) and fossil (48 ± 8%) OC. The quantitatively significant polar OC fraction (6–25% of TOC) had fossil contributions (30 ± 12%) similar to TOC (26 ± 7%) and TSE (28 ± 9%). Thus, much of both of the fossil and contemporary OC is deduced to be oxidized, polar material. Aerosol WSOC consistently showed low fossil content (〈8%) relative to the TOC (5–50%) indicating that the majority of fossil OC in aerosol particulates is insoluble. Therefore, on the basis of solubility and polarity, aerosols are predicted to partition differently once deposited to watersheds, and these chemically distinct components are predicted to contribute in quantitatively and qualitatively different ways to watershed carbon biogeochemistry and cycling.
    Description: ASW was partially supported by a Graduate Fellowship from the Hudson River Foundation during the course of this study. Additional funding for this work came from a NOSAMS student internship award, a fellowship award from Sun Trust Bank administered through the VIMS Foundation, a student research grant from VIMS, and the following NSF awards: DEB Ecosystems grant DEB-0234533, Chemical Oceanography grant OCE-0327423, and Integrated Carbon Cycle Research Program grant EAR-0403949 to JEB; and Chemical Oceanography grant OCE-0727575 to RMD and JEB.
    Description: 2013-01-04
    Keywords: Aerosols ; Isotopes ; Organic carbon ; Particulate matter ; Radiocarbon ; Water soluble organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...