GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Tides. ; Tides-History. ; Oceanography. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (468 pages)
    Edition: 1st ed.
    ISBN: 9780323908528
    DDC: 551.464
    Language: English
    Note: Intro -- A Journey Through Tides -- Copyright -- Dedication -- Contents -- Contributors -- Editors biography -- Preface -- Acknowledgments -- Section 1: Fundamentals -- Chapter 1: Tidal science before and after Newton -- 1. Introduction -- 2. Aspects of the tides known since antiquity -- 3. Investigations of the tides before Newton -- 4. Isaac Newton's Principia Mathematica -- 5. Essays for the Académie Royale des Sciences -- 6. Before and after Newton -- 7. Conclusions -- Acknowledgments -- References -- Chapter 2: Introducing the oceans -- 1. Our blue planet -- 2. Physical properties of seawater -- 3. Geography and ocean circulation -- 4. Key water masses and global distributions -- 5. Oceanic impact on and sensitivity to Earth's climate -- Acknowledgments -- References -- Chapter 3: A brief introduction to tectonics -- 1. Tectonics -- 1.1. Early ideas -- 1.2. Paradigm shift -- 1.3. The theory of plate tectonics -- 1.4. The modern conception of plate tectonics -- 2. Earth's tectonic cycles -- 2.1. The Wilson cycle -- 2.2. The supercontinent cycle -- 2.3. The supertidal cycle -- References -- Chapter 4: Why is there a tide? -- 1. Introduction to tides -- 1.1. The importance of tides -- 1.2. The ups and downs of the seas -- 1.3. The dance of the Earth and the Moon -- 1.4. The tide generating force -- 2. Tidal theories -- 2.1. Equilibrium theory of tides -- 2.2. Why the tide does not behave as an equilibrium tide -- 2.3. The effects of Earth's rotation on the tide -- 2.4. The dynamic theory of tides -- 3. Tides in the real world -- 3.1. The tide as a shallow water wave -- 3.2. Standing and progressive waves -- 3.3. Resonance -- 3.4. Coriolis effect, geostrophy, and Kelvin waves -- 3.5. Barotropic and baroclinic tides -- 3.6. Tidal currents -- 3.7. Tidal charts -- 4. Tidal energetics and energy losses -- 4.1. Tidal friction -- 4.2. Internal tides. , 5. Chapter summary -- References -- Section 2: A tidal journey through time -- Chapter 5: A timeline of Earth's history -- 1. Geological time -- 2. Chrono-stratigraphy -- 3. The geological timescale -- 4. Main events in Earth's history -- 4.1. The Hadean Eon (4600-4000Ma) -- 4.2. Archean Eon (4000-2500Ma) -- 4.3. Proterozoic Eon (2500Ma-541Ma) -- 4.4. Phanerozoic Eon (541-0Ma) -- 5. Final remarks -- References -- Chapter 6: Hadean and Archean (4600-2500 Ma) -- 1. Introduction -- 2. Methods -- 2.1. Tidal modeling -- 2.2. Bathymetry -- 3. Results -- 3.1. Present-day Earth bathymetry -- 3.2. Venusian topography -- 3.3. Archean ensemble -- 4. Discussion -- References -- Chapter 7: Proterozoic (2500-541Ma) -- 1. Introduction -- 2. Methods -- 2.1. Tidal modeling -- 2.2. Bathymetry -- 2.3. Simulations and computations -- 3. Results -- 3.1. Present-day validation -- 3.2. Tidal evolution 1500-750Ma -- 3.3. Tidal evolution 750-540Ma -- 4. Summary -- Acknowledgments -- References -- Chapter 8: Phanerozoic (541Ma-present day) -- 1. Introduction -- 2. Tectonics -- 3. ``It's life, Jim, but not as we know it´´ -- 4. The ups and downs of phanerozoic tides -- 5. Methods -- 5.1. Tidal modeling -- 5.2. Reconstructions -- 5.3. Simulations -- 5.4. Present day validation -- 6. Results -- 6.1. Paleozoic (541-252Ma) -- 6.2. Mesozoic (252-66Ma) -- 6.3. Cenozoic (66-0Ma) -- 6.4. Other constituents -- 7. Case studies -- 7.1. The Devonian -- 7.2. The Eocene -- 7.3. Extinctions -- 8. Summary -- Acknowledgments -- References -- Chapter 9: Present day: Tides in a changing climate -- 1. Introduction -- 2. Climate and sea level through the late Quaternary -- 2.1. The Last Glacial Cycle -- 2.2. The Last Glacial Maximum -- 2.3. The Last Deglacial -- 2.4. The Holocene -- 2.5. Late Holocene to present day -- 2.6. Future -- 3. Modeling the tides during the late Pleistocene and Holocene. , 3.1. Tide model -- 3.2. Bathymetries and simulations -- 4. Tides during the late Pleistocene, Holocene, and into the future -- 4.1. Tides during the Last Glacial Cycle and late Pleistocene -- 4.1.1. Semi-diurnal tidal changes -- 4.1.2. Changes in the principle diurnal tidal constituent -- 4.1.3. Implications for tidal changes during the late Pleistocene -- 4.2. Tidal dynamics during the Last Glacial Maximum -- 4.2.1. Tidal elevation amplitudes -- 4.2.2. Tidal energy losses -- 4.2.3. Consequences of altered LGM tidal dynamics -- 4.3. Tidal changes through the Deglacial and the Holocene -- 4.3.1. Global changes in tidal dynamics -- 4.3.2. Regional changes in tides during the mid and late Holocene -- 4.3.3. Effects of deglacial tidal changes -- 4.4. Changes in tides since the preindustrial era -- 4.4.1. Observed tidal trends: The tide gauge record and satellite altimetry -- 4.4.2. What is driving today's changes in the tides? -- 4.5. Future changes in the tides -- 5. Summary -- References -- Chapter 10: Into the future -- 1. Introduction -- 2. Methods -- 2.1. Tidal modeling -- 2.2. Maps of the future -- 3. Results -- 3.1. Present-day validation -- 3.2. Pangea ultima -- 3.3. Novopangea -- 3.4. Aurica -- 3.5. Amasia -- 4. Discussion -- References -- Section 3: Consequences of living on a tidal planet -- Chapter 11: Tides at a coast -- 1. Introduction -- 2. Tides at the coast -- 3. Tidal interactions with other physical processes -- 3.1. Tidal interaction with the atmosphere at the coast -- 3.2. Tidal interaction with regions of freshwater -- 3.3. Tidal interactions with wind generated sea surface waves at the coast -- 4. Transport of matter -- 4.1. Turbulent mixing and the flushing of coastal seas -- 4.2. Transport of properties and materials -- 5. Tidal observations at the coast -- 5.1. Tide gauge networks -- 5.2. Measurement technology. , 5.3. Data types -- 5.4. Quality control and data analysis -- 5.5. Sea-level rise (SLR), climate assessments and storm surges -- 5.6. Acceleration of SLR and SLR modulating tidal constituents -- 6. Tidal applications -- 6.1. Predictions for ports and harbors -- 6.2. Tidal datums -- 6.3. Predictions for flood forecasting -- 6.4. Tidal power -- 6.5. Summary -- Acknowledgments -- References -- Chapter 12: Tidal rhythmites: Their contribution to the characterization of tidal dynamics and environments -- 1. Introduction -- 2. Tidalites and tidal rhythmites: Definition and first description -- 3. Methodology for tidal rhythmite recognition -- 4. Environments of deposition of tidal rhythmites -- 5. Implications of tidal rhythmite recognition and interpretation -- 5.1. Tidal rhythmites as proxies for ancient tidal dynamic and environment identification, and paleogeographic reconstruction -- 5.2. Tidal rhythmites as proxies of depositional elevation in a tidal environment -- 5.3. Tidal rhythmites as proxies of sedimentation rate measurement and time deposition estimates -- 5.4. Tidal rhythmites as proxies of orbital parameter changes of the Earth-Moon system -- 6. Conclusion -- Acknowledgments -- References -- Chapter 13: Tides: Lifting life in the ocean -- 1. The productive ocean -- 2. The biological carbon pump -- 3. A nutrient-rich interior ocean -- 4. A nutrient-limited surface ocean -- 5. Mixing nutrients up -- 6. Mixing life down -- 7. Shining light in the deep -- 8. Succession and mortality -- 9. Ecosystem productivity -- 10. A role for tides, turbulence, and deep production -- References -- Chapter 14: Tides, earthquakes, and volcanic eruptions -- 1. Introduction -- 2. Data and methods to study the tidal influence on faults and volcanoes -- 2.1. Observations -- 2.2. Methods to evaluate tidal influence on seismic and volcanic activity. , 3. Case studies of tidal control on earthquakes and volcanoes -- 3.1. Tectonic systems -- 3.1.1. Continental faults: The San Andreas fault, California -- 3.1.2. Subduction zones: Japan -- 3.2. Volcanic settings -- 3.2.1. Unrest calderas: The hydrothermal system of Campi Flegrei, Italy -- 3.2.2. Erupting volcanic systems: Short to long-term tidal influence -- 4. How do tides influence seismic and volcanic activity? -- 5. Summary and future outlook -- Acknowledgments -- References -- Chapter 15: Solid Earth tides -- 1. Introduction -- 2. Traditional theory and inferences from observations -- 2.1. Love-Shida numbers -- 2.2. Extensions to Love-Shida theory -- 2.2.1. Rotation -- 2.2.2. Laterally heterogeneous Earth structure -- 2.2.3. Anelasticity -- 2.3. Ocean tide loading -- 3. Tides on a complicated Earth -- 3.1. Connection to free oscillation theory -- 3.2. Equivalence with Love-Shida numbers -- 3.3. Anelastic Love numbers -- 3.4. Departure from spherical symmetry -- 4. Constraining Earth's structure -- 5. Future tidal study -- References -- Chapter 16: Atmospheric tides-An Earth system signal -- 1. Introduction -- 2. Solar tides -- 3. Lunar tides -- 4. Importance of atmospheric tides -- 4.1. Atmosphere-ionosphere coupling -- 4.2. Constraints on tropospheric processes -- 4.3. Geodesy -- 5. Beyond Earth's modern atmosphere -- 5.1. Tidal braking and Precambrian day length -- 5.2. Superrotation of Venus -- 5.3. Summary remark -- Acknowledgments -- References -- Chapter 17: Tidal drag in exoplanet oceans -- 1. Introduction -- 2. Water in the cosmos -- 3. Exoplanet oceans -- 4. Ocean tides on exoplanets -- 5. Summary -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...