GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean bottom  (1)
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February, 1983
    Description: Altimetric, gravimetric and oceanographic data over the North Atlantic are combined -using techniques of optimum estimation- to infer the surface expression of the time averaged circulation (ζ) and to estimate the marine geoid (γ), both in the wavelength band 100 km-2000 km. Optimum inverse methods in geophysics are reviewed. They are then used to analyze the estimation of the geoid from gravity data, emphasizing the wavenumber spectrum of resolution functions. It is found that accurate bandpassed versions of the geoid can be recovered from restricted data sets. The accuracy and distribution of publicly available gravity data are shown to define an estimate γ whose expected errors, σγ, range between 30 and 260 cm, assuming the Wagner and Colombo (1978) spectrum describes the average geoid behaviour. The σγ underestimate the actual differences between 'y and an altimetric surface (s) derived from Seasat, but the spatial variation of σγ follows closely the differences s-γ. The discrepancy is attributable to a partial failure of the spectral model at short wavelengths. The differences s-γ are dominated by geoid error that masks much of the signal ζ. The main North Atlantic gyre emerges clearly only after the σγ and the simplest model for ζ -as a spatially uncorrelated process with (30 cm)2 variance- are taken into account. To obtain a corrected geoid, a hydrographic estimate of ζ is combined with sand γ, and their expected errors.
    Description: NASA's research Grant NAG6-9 funded this work
    Keywords: Submarine topography ; Ocean bottom
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...