GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Urea  (1)
  • 1
    ISSN: 1432-136X
    Keywords: Key words Urea ; Ammonia ; Gill ; Arginine vasotocin ; Adrenaline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Simultaneous measurements of cardio-respiratory variables, oxygen uptake and whole body urea/ammonia/tritiated water effluxes were performed on cannulated gulf toadfish, Opsanus beta, before and after intra-arterial injection of the vasoactive agents, adrenaline, isoproterenol and arginine vasotocin. These experiments were conducted to test the hypothesis that the phenomenon of pulsatile urea excretion might reflect sudden changes in the general diffusive properties of the gill for solute transfer. Injection of isoproterenol (final nominal circulating level = 10−6 mol l−1), was used as a tool to maximise the diffusive and perfusive conditions for branchial solute transfer. This protocol caused a pronounced reduction in arterial blood pressure, an elevation of cardiac frequency and associated increases in whole body urea and tritiated water effluxes; ammonia excretion and oxygen uptake were unaffected. Injection of adrenaline (final nominal circulating level=10−6 mol l−1), caused a significant increase in arterial blood pressure and a tachycardia, yet nitrogen excretion and oxygen uptake were unaffected. Injection of arginine vasotocin, caused a dose-dependent (final nominal circulating levels = 10−11–10−9 mol l−1) increase in arterial blood pressure without affecting cardiac or ventilation frequency. At the two higher concentrations, arginine vasotocin caused large and transient increases in urea excretion without significantly affecting ammonia, water or oxygen fluxes. These results suggest that increased gill diffusive or perfusive conductance, while capable of augmenting urea efflux, cannot fully explain the sudden and massive increases in urea transfer associated with pulsatile urea excretion in toadfish. It is suggested that pulsatile urea excretion in this species may reflect a specific enhancement of urea excretion under the control of the neurohypophyseal hormone, arginine vasotocin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...