GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hydrothermal activity  (2)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 420 (2016): 114-126, doi: 10.1016/j.chemgeo.2015.11.006.
    Description: Here, we review the relationship between the distribution of modern-day seafloor hydrothermal activity along the global mid-ocean ridge crest and the nature of the mineral deposits being formed at those sites. Since the first discovery of seafloor venting, a sustained body of exploration has now prospected for one form of hydrothermal activity in particular – high temperature “black smoker” venting - along 〉30% of the global mid ocean ridge crest. While that still leaves most of that ~60,000km continuous network to be explored, some important trends have already emerged. First, it is now known that submarine venting can occur along all mid-ocean ridges, regardless of spreading rate, and in all ocean basins. Further, to a first approximation, the abundance of currently active venting, as deduced from water column plume signals, can be scaled linearly with seafloor spreading rate (a simple proxy for magmatic heat-flux). What can also be recognized, however, is that there is an “excess” of high temperature venting along slow and ultra-slow spreading ridges when compared to what was originally predicted from seafloor spreading / magmatic heat-budget models. An examination of hydrothermal systems tracked to source on the slow spreading Mid Atlantic Ridge reveals that no more than half of the sites responsible for the “black smoker” plume signals observed in the overlying water column are associated with magmatic systems comparable to those known from fast- spreading ridges. The other half of all currently known active high-temperature submarine systems on the Mid-Atlantic Ridge are hosted under tectonic control. These systems appear both to be longer-lived than, and to give rise to much larger sulfide deposits than, their magmatic counterparts - presumably as a result of sustained fluid flow. A majority of these tectonic-hosted systems also involve water-rock interaction with ultramafic sources. Importantly, from a mineral resource perspective, this subset of tectonic-hosted vent-sites also represents the only actively-forming seafloor massive sulfide deposits on mid-ocean ridges that exhibit high concentrations of Cu and Au in their surface samples (〉10wt.% average Cu content and 〉3ppm average Au). Along ultraslow-spreading ridges, first detailed examinations of hydrothermally active 74 sites suggest that sulfide deposit formation at those sites may depart even further from the spreading-rate model than slow-spreading ridges do. Hydrothermal plume distributions along ultraslow ridges follow the same (~50:50) distribution of “black smoker” plume signals between magmatic and tectonics settings as the slow spreading MAR. However, the first three “black smoker” sites tracked to source on any ultra-slow ridges have all revealed high temperature vent-sites that host large polymetallic sulfide deposits in both magmatic as well as tectonic settings. Further, deposits in both types of setting have now been revealed to exhibit moderate to high concentrations of Cu and Au, respectively. An important implication is that ultra- slow ridges may represent the strongest mineral resource potential for the global ridge crest, despite being host to the lowest magmatic heat budget.
    Description: Preparation of this review has benefited from research support to CRG, SP and MDH from the Woods Hole Oceanographic Institution, USA, from GEOMAR and the Helmholtz Foundation, Germany and from NSERC, Canada. The opportunity to discuss ideas and bring together our different perspectives - from water column geochemistry and seafloor massive sulfide studies - was facilitated by a Research Award from the Alexander von Humboldt Foundation to CRG.
    Description: 2016-11-14
    Keywords: Hydrothermal activity ; Seafloor massive sulfides ; Mid-ocean ridges ; Exploration ; Copper ; Gold
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 4892–4905, doi:10.1002/2013GC004998.
    Description: The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.
    Description: For support to prepare this manuscript, we thank the National Science Foundation (OCE08-38923, GeoEd12-02977), the NOAA Vents (now Earth-Ocean Interactions) Program and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148, and WHOI.
    Description: 2014-05-19
    Keywords: Hydrothermal vent ; Deep-sea vent ; Hydrothermal activity ; Drupal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/tiff
    Format: text/csv
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...