GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-16
    Description: Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. Here we identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukaemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized putative cancer drivers (RPS15, IKZF3), and collectively identify RNA processing and export, MYC activity, and MAPK signalling as central pathways involved in CLL. Clonality analysis of this large data set further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing data sets of clinically informative samples enable the discovery of novel genes associated with cancer, the network of relationships between the driver events, and their impact on disease relapse and clinical outcome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landau, Dan A -- Tausch, Eugen -- Taylor-Weiner, Amaro N -- Stewart, Chip -- Reiter, Johannes G -- Bahlo, Jasmin -- Kluth, Sandra -- Bozic, Ivana -- Lawrence, Mike -- Bottcher, Sebastian -- Carter, Scott L -- Cibulskis, Kristian -- Mertens, Daniel -- Sougnez, Carrie L -- Rosenberg, Mara -- Hess, Julian M -- Edelmann, Jennifer -- Kless, Sabrina -- Kneba, Michael -- Ritgen, Matthias -- Fink, Anna -- Fischer, Kirsten -- Gabriel, Stacey -- Lander, Eric S -- Nowak, Martin A -- Dohner, Hartmut -- Hallek, Michael -- Neuberg, Donna -- Getz, Gad -- Stilgenbauer, Stephan -- Wu, Catherine J -- 1K01ES025431-01/ES/NIEHS NIH HHS/ -- 1R01CA182461-02/CA/NCI NIH HHS/ -- 1R01CA184922-01/CA/NCI NIH HHS/ -- 1U10CA180861-01/CA/NCI NIH HHS/ -- K01 ES025431/ES/NIEHS NIH HHS/ -- R01 HL116452/HL/NHLBI NIH HHS/ -- U10 CA180861/CA/NCI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Oct 22;526(7574):525-30. doi: 10.1038/nature15395. Epub 2015 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine III, Ulm University, Ulm 89081, Germany. ; IST Austria (Institute of Science and Technology Austria), Klosterneuburg 3400, Austria. ; Program for Evolutionary Dynamics, Harvard University, Cambridge 02138, Massachusetts, USA. ; Department I of Internal Medicine and Center of Integrated Oncology Cologne Bonn, University Hospital, Cologne 50937, Germany. ; Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Internal Medicine II, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany. ; Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne 50931, Germany. ; Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26466571" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Transformation, Neoplastic/genetics ; Clone Cells/metabolism/pathology ; DNA Copy Number Variations/genetics ; *Disease Progression ; *Evolution, Molecular ; Exome/genetics ; Genes, myc/genetics ; Humans ; Ikaros Transcription Factor/genetics ; Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis/*genetics/pathology/therapy ; MAP Kinase Signaling System/genetics ; Mutation/*genetics ; Neoplasm Recurrence, Local/*genetics ; Prognosis ; RNA Processing, Post-Transcriptional/genetics ; RNA Transport/genetics ; Ribosomal Proteins/genetics ; Treatment Outcome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-30
    Description: Lymphocyte functions triggered by antigen recognition and co-stimulation signals are associated with a rapid and intense cell division, and hence with metabolism adaptation. The nucleotide cytidine 5' triphosphate (CTP) is a precursor required for the metabolism of DNA, RNA and phospholipids. CTP originates from two sources: a salvage pathway and a de novo synthesis pathway that depends on two enzymes, the CTP synthases (or synthetases) 1 and 2 (CTPS1 with CTPS2); the respective roles of these two enzymes are not known. CTP synthase activity is a potentially important step for DNA synthesis in lymphocytes. Here we report the identification of a loss-of-function homozygous mutation (rs145092287) in CTPS1 in humans that causes a novel and life-threatening immunodeficiency, characterized by an impaired capacity of activated T and B cells to proliferate in response to antigen receptor-mediated activation. In contrast, proximal and distal T-cell receptor (TCR) signalling events and responses were only weakly affected by the absence of CTPS1. Activated CTPS1-deficient cells had decreased levels of CTP. Normal T-cell proliferation was restored in CTPS1-deficient cells by expressing wild-type CTPS1 or by addition of exogenous CTP or its nucleoside precursor, cytidine. CTPS1 expression was found to be low in resting T cells, but rapidly upregulated following TCR activation. These results highlight a key and specific role of CTPS1 in the immune system by its capacity to sustain the proliferation of activated lymphocytes during the immune response. CTPS1 may therefore represent a therapeutic target of immunosuppressive drugs that could specifically dampen lymphocyte activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Emmanuel -- Palmic, Noe -- Sanquer, Sylvia -- Lenoir, Christelle -- Hauck, Fabian -- Mongellaz, Cedric -- Fabrega, Sylvie -- Nitschke, Patrick -- Esposti, Mauro Degli -- Schwartzentruber, Jeremy -- Taylor, Naomi -- Majewski, Jacek -- Jabado, Nada -- Wynn, Robert F -- Picard, Capucine -- Fischer, Alain -- Arkwright, Peter D -- Latour, Sylvain -- G1001799/Medical Research Council/United Kingdom -- WT095219MA/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Jun 12;510(7504):288-92. doi: 10.1038/nature13386. Epub 2014 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratoire Activation Lymphocytaire et Susceptibilite a l'EBV, INSERM UMR 1163, Hopital Necker Enfants-Malades, Paris 75015, France [2] Universite Paris Descartes Sorbonne Paris Cite, Institut Imagine, Paris 75015, France. ; Laboratoire de Biochimie Metabolomique et Proteomique, Hopital Necker Enfants-Malades, Paris 75015, France. ; Hematopoiesis and Immunotherapy, CNRS-UMR 5535, Institut de Genetique Moleculaire de Montpellier, Montpellier 34293, France. ; 1] Universite Paris Descartes Sorbonne Paris Cite, Institut Imagine, Paris 75015, France [2] Plateforme Vecteurs Viraux et Transfert de Genes, IFR94, Hopital Necker Enfants-Malades, Paris 75015, France. ; 1] Universite Paris Descartes Sorbonne Paris Cite, Institut Imagine, Paris 75015, France [2] Service de Bioinformatique, Hopital Necker Enfants-Malades, Paris 75015, France. ; 1] University of Manchester, Royal Manchester Children's Hospital, Manchester M13 0WL, UK [2] Italian Institute of Technology, Genoa 16163, Italy. ; McGill University and Genome Quebec Innovation Centre, Montreal H3A 0G1, Canada. ; 1] McGill University and Genome Quebec Innovation Centre, Montreal H3A 0G1, Canada [2] Department of Pediatrics, McGill University Health Center Research Institute, Montreal H3H 1P3, Canada. ; University of Manchester, Royal Manchester Children's Hospital, Manchester M13 0WL, UK. ; 1] Universite Paris Descartes Sorbonne Paris Cite, Institut Imagine, Paris 75015, France [2] Centre d'Etude des Deficits Immunitaires, Hopital Necker Enfants-Malades, AP-HP, Paris 75015, France [3] Laboratoire Genetique Humaine des Maladies Infectieuses, INSERM UMR 1163, Hopital Necker Enfants-Malades, Paris 75015, France. ; 1] Laboratoire Activation Lymphocytaire et Susceptibilite a l'EBV, INSERM UMR 1163, Hopital Necker Enfants-Malades, Paris 75015, France [2] Universite Paris Descartes Sorbonne Paris Cite, Institut Imagine, Paris 75015, France [3] Unite d'Immunologie et Hematologie Pediatrique, Assistance Publique-Hopitaux de Paris (AP-HP), Hopital Necker Enfants-Malades, Paris 75015, France [4] College de France, Paris 75005, France. ; 1] University of Manchester, Royal Manchester Children's Hospital, Manchester M13 0WL, UK [2]. ; 1] Laboratoire Activation Lymphocytaire et Susceptibilite a l'EBV, INSERM UMR 1163, Hopital Necker Enfants-Malades, Paris 75015, France [2] Universite Paris Descartes Sorbonne Paris Cite, Institut Imagine, Paris 75015, France [3] Laboratoire de Biochimie Metabolomique et Proteomique, Hopital Necker Enfants-Malades, Paris 75015, France [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870241" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD3/immunology ; B-Lymphocytes/cytology/immunology/metabolism ; Carbon-Nitrogen Ligases/*deficiency/genetics/*metabolism ; Cell Proliferation ; Child, Preschool ; Cytidine Triphosphate/metabolism ; Female ; Humans ; Immunologic Deficiency Syndromes/enzymology/genetics ; Infant ; Infant, Newborn ; *Lymphocyte Activation/genetics ; Lymphocytes/*cytology/immunology/metabolism ; Male ; Mutation/genetics ; Receptors, Antigen, T-Cell/immunology ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-17
    Description: The cytokine tumor necrosis factor (TNF) is the primary trigger of inflammation. Like many extracellular signaling proteins, TNF is synthesized as a transmembrane protein; the active signal is its ectodomain, which is shed from cells after cleavage by an ADAM family metalloprotease, ADAM17 (TNFalpha-converting enzyme, TACE). We report that iRhom2 (RHBDF2), a proteolytically inactive member of the rhomboid family, is required for TNF release in mice. iRhom2 binds TACE and promotes its exit from the endoplasmic reticulum. The failure of TACE to exit the endoplasmic reticulum in the absence of iRhom2 prevents the furin-mediated maturation and trafficking of TACE to the cell surface, the site of TNF cleavage. Given the role of TNF in autoimmune and inflammatory diseases, iRhom2 may represent an attractive therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272371/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272371/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adrain, Colin -- Zettl, Markus -- Christova, Yonka -- Taylor, Neil -- Freeman, Matthew -- MC_U105178780/Medical Research Council/United Kingdom -- U.1051.01.009(78780)/Medical Research Council/United Kingdom -- U105178780/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):225-8. doi: 10.1126/science.1214400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246777" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/*metabolism ; Animals ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Endoplasmic Reticulum/metabolism ; Enzyme Activation ; Furin/metabolism ; Humans ; Lipopolysaccharides/immunology ; Macrophages/metabolism ; Mice ; Mice, Knockout ; Protein Binding ; Protein Transport ; *Signal Transduction ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...