GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key words Nitrogen ; Salt marsh ; Positive interaction ; Insect herbivory ; Trophic interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nutrients can structure communities by influencing both plant interactions and plant herbivore interactions, though rarely do studies integrate these processes. In this study we examined how nitrogen fertilization influenced (1) the positive interaction between the marsh elder, Iva frutescens, and the black rush, Juncusgerardi, and (2) the quality of Iva as a host plant for the aphid, Uroleuconambrosiae. Previous studies have shown that by mitigating soil salt accumulation and hypoxia, Juncus is essential to the survival of Iva and its aphid herbivore at mid-marsh elevations. To address the effects of nitrogen on this interaction, we compared fertilized and unfertilized Iva plants subject to Juncus removal and control treatments in the field. Additionally, we measured the monthly population growth rates of aphids transplanted onto these Iva plants. Iva leaf biomass and flower number results indicated that fertilizing Iva eliminated its dependence upon Juncus, such that fertilized plants grown without Juncus were not different from unmanipulated plants. Aphid monthly population growth rates through mid-summer revealed that fertilization also eliminated the indirect dependency of aphids on Juncus, so that aphid growth rates on fertilized Iva without Juncus neighbors were similar to rates on unmanipulated Iva. Results also indicated that fertilizing Iva grown with Juncus increased Iva size, potentially enabling these plants to support larger aphid populations. Our results suggest that only under conditions of nitrogen limitation are the positive effects of Juncus essential to the mid-marsh persistence of Iva and its aphid herbivore. Furthermore, we found that nitrogen effects on aphid populations may arise not only from a direct effect of nutrients on Iva size but also through the indirect effects of nitrogen on the interaction between Juncus and Iva. We argue that studies integrating processes occurring both within and between trophic levels, are important to fully understanding the community-wide effects of nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 92 (1992), S. 490-497 
    ISSN: 1432-1939
    Keywords: Halophytes ; Salt marsh ecology ; Secondary succession ; Seed bank ; Seedling recruitment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Seedling recruitment in salt marsh plant communities is generally precluded in dense vegetation by competition from adults, but is also relatively rare in disturbance-generated bare space. We examined the constraints on seedling recruitment in New England salt marsh bare patches. Under typical bare patch conditions seed germination is severely limited by high substrate salinities. We examined the germination requirements of common high marsh plants and found that except for one notably patch-dependent fugitive species, the germination of high marsh plants is strongly inhibited by the high soil salinities routinely encountered in natural bare patches. Watering high marsh soil in the greenhouse to alleviate salt stress resulted in the emergence of up to 600 seedlings/225 cm2. The vast majority of this seed bank consisted of Juncus gerardi, the only common high marsh plant with high seed set. We tested the hypothesis that salt stress limits seedling contributions to marsh patch secondary succession in the field. Watering bare patches with fresh water partially alleviated patch soil salinities and dramatically increased both the emergence and survival of seedlings. Our results show that seedling recruitment by high marsh perennial turfs is limited by high soil salinities and that consequently their population dynamics are determined primarily by clonal growth processes. In contrast, populations of patch-dependent fugitive marsh plants which cannot colonize vegetatively are likely governed by spatially and temporally unpredictable windows of low salinities in bare patches.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...