GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (2)
  • Hirudin  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Perspectives in drug discovery and design 1 (1994), S. 431-452 
    ISSN: 1573-9023
    Keywords: Thrombin ; Fibrinogen ; Hirudin ; Heparin ; Drug design ; Crystal structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The wealth of structural information now available on thrombin, its precursors, its substrates and its inhibitors allows a rationalization of its many roles. α-Thrombin exhibits an unusually deep and narrow active-site cleft, formed by loop insertions that are characteristic of thrombin. This canyon structure is one of the prime causes for the narrow specificity of thrombin. As a result of the conjunction of amino acid residues with similar properties such as charge or hydrophobicity, thrombin can be divided up into a number of functional regions. The apposition of the active site to a hydrophobic pocket (the apolar binding site) on one side and a basic patch (the fibrinogen recognition exosite) on the other allows for a fine-tuning of enzymatic activity, as seen for fibrinogen. These two sites are also optimally used by the leech-derived inhibitor hirudin, allowing the very tight binding observed; thrombin inhibition is effected by blocking access to the active site. Interactions with antithrombin III are tightened with the help of heparin, which binds to a second basic site (the heparin binding site). Non-proteolytic cellular properties are attributed to the rigid insertion loop at Tyr60A. The observed rigidity of the thrombin molecule in its complexes makes thrombin ideal for structure-based drug design. Thrombin can be inhibited either at the active site or at the fibrinogen recognition exosite, or both. Structural information shows that binding at the former is enhanced by good fit of aromatic moieties to the aryl and S2 binding sites (the apolar binding site). Binding at the fibrinogen recognition exosite is facilitated by negatively charged groups. The unpredictable nature of inhibitor binding underlines the importance of experimental monitoring of structures of thrombin inhibitors in the drug design process.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Im Vergleich zu den relativ komplizierten Geißeln aller kernhaltigen Lebewesen besitzen die meisten aktiv beweglichen Bakterien sehr viel einfacher gebaute Bewegungsorganellen. Diese Flagella sind einseitig in der Zellmembran verankerte, lange, dünne Filamente mit schraubenförmiger Überstruktur. Während der Bewegung laufen an ihnen helicale Wellen in distaler Richtung entland. In den Flagella sind identische Bausteine nur einer einzigen Proteinspezies, des Flagellins, über nichtkovalente Bindungen miteinander verknüpft. Durch schonende Methoden können die Flagellinuntereinheiten voneinander getrennt und im isolierten Zustand biochemisch und struktur- sowie gestaltsmäßig untersucht werden. Unter bestimmten Bedingungen können sie in vitro zu polymorphen helicalen Filamenten reaggregieren, die sich von intakten Geißeln kaum unterscheiden lassen. Im Flagellum sind die gestreckten Flagellinmoleküle in ca. zehn parallelen Strängen geschichtet angeordnet, die wiederum zu einem Hohlzylinder zusammengefügt sind. Da dieser zu einer großen Schraube deformiert ist, sind die einzelnen chemisch identischen Flagellinprotomeren sowie auch die Protomerstränge in den helicalen Flagella nur noch quasiäquivalent. Vermutlich kann in vivo das Konformations- und Bindungsmuster der einzelnen longitudinalen Flagellinreihen von den Basalstrukturen aus gesteuert werden, so daß folgender Bewegungsablauf innerhalb des Flagellums denkbar ist: Eine zyklisch induzierte Längenänderung der einzelnen Stränge könnte eine scheinbare Rotation der Flagellumschraube bewirken. Nach hydrodynamischen Berechnungen reicht der resultierende Vorwärtsschub aus, um den Bakterien die beobachteten Geschwindigkeiten bis zu 50μm/s zu verleihen.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0570-0833
    Keywords: Bacterial flagella ; Proteins ; Flagellin ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In comparison with the relatively complicated flagella of all nucleated organisms, most of the actively motile bacteria have very much simpler locomotion organelles. These flagella are long thin filaments with a helical superstructure, anchored at one end in the cell membrane. Helical waves pass along the flagella in the distal direction during locomotion. In the flagella, identical structural units of a single protein species, flagellin, are linked to one another by non-covalent bonds. The flagellin subunits can be separated from one another by mild methods, and their biochemistry as well as their structure and morphology can be investigated in the isolated state. Under certain conditions they can reaggregate in vitro to form polymorphous helical filaments, which are practically indistinguishable from intact flagella. In the flagellum, the elongated flagellin molecules have a layered arrangement in about ten parallel strands, which in turn form a hollow cylinder. Since this cylinder is deformed into a large helix, the individual chemically identical flagellin protomers and the protomer strands in the helical flagella are only quasi-equivalent. The conformation and bonding pattern of the individual longitudinal flagellin lines can presumably be controlled in vitro by the basal structures, so that movement within the flagellum could conceivably occur as follows. A cyclically induced change in the length of the individual strands could result in an apparent rotation of the helical flagellum. According to hydrodynamic calculations, the resulting forward thrust is sufficient to propel the bacteria at the observed speeds of up to 50 μm/s.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...