GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-20
    Description: Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper–immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1 + NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.
    Keywords: Immunobiology
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-01
    Description: Objective Eosinophilic oesophagitis (EoE) and gastro-oesophageal reflux disease (GORD) can have similar clinical and histological features. Proton pump inhibitors (PPIs) are used to distinguish the disorders, with the assumption that only GORD can respond to PPIs. Oesophageal expression of eotaxin-3 stimulated by Th2 cytokines might contribute to oesophageal eosinophilia in EoE. Th2 cytokine effects on the oesophagus in GORD are not known. The objective of the authors was to explore the molecular mechanisms of Th2 cytokines on eotaxin-3 expression by oesophageal squamous cells from patients with GORD and EoE, and the effects of omeprazole on that eotaxin-3 expression. Design Using telomerase-immortalised and primary cultures of oesophageal squamous cells from GORD and EoE patients, the authors measured eotaxin-3 protein secretion stimulated by Th2 cytokines (interleukin (IL)-4 and IL-13). Eotaxin-3 promoter constructs were used to study transcriptional regulation. Cytokine-induced eotaxin-3 mRNA and protein expression were measured in the presence or absence of omeprazole. Results There were no significant differences between EoE and GORD primary cells in cytokine-stimulated eotaxin-3 protein secretion levels. In EoE and GORD cell lines, IL-4 and IL-13 activated the eotaxin-3 promoter, and significantly increased eotaxin-3 mRNA and protein expression. Omeprazole blocked the cytokine-stimulated increase in eotaxin-3 mRNA and protein expression in EoE and GORD cell lines. Conclusion Oesophageal squamous cells from GORD and EoE patients express similar levels of eotaxin-3 when stimulated by Th2 cytokines, and omeprazole blocks that eotaxin-3 expression. These findings suggest that PPIs might have eosinophil-reducing effects independent of effects on acid reflux and that response to PPIs might not distinguish EoE from GORD.
    Keywords: Gastro-oesophageal reflux
    Print ISSN: 0017-5749
    Electronic ISSN: 1468-3288
    Topics: Medicine
    Published by BMJ Publishing Group
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-13
    Description: HIV infection results in a decrease in circulating CD4 + T-cell and naive T-cell numbers. If such losses were associated with an erosion of T-cell receptor (TCR) repertoire diversity in the peripheral T-cell pool, this might exacerbate the state of persistent immunodeficiency. Existing methods for the analysis of the TCR repertoire have demonstrated skewed distributions of TCR genes in HIV-infected subjects but cannot directly measure TCR diversity. Here we used AmpliCot, a quantitative assay based on DNA hybridization kinetics, to measure TCR diversity in a cross-sectional comparison of 19 HIV-infected persons to 18 HIV-uninfected controls. HIV-infected persons had a 10-fold decrease in total TCR repertoire diversity in 1.5 mL of blood compared with uninfected controls, with decreased diversity correlating most closely with a lower CD4 + T-cell percentage. Nonetheless, the TCR repertoire diversity of sort-purified T-cell subpopulations in HIV-infected and HIV-uninfected subjects was comparable. These observations suggest that the TCR repertoire diversity changes in whole blood during HIV disease progression are primarily the result of changes in the number and proportion of T-cell subpopulations and that most HIV-infected persons may retain a sufficiently diverse TCR repertoire to permit immune reconstitution with antiretroviral therapy alone, without thymopoiesis.
    Keywords: Immunobiology
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-07
    Description: Objective Oesophagitis might result from the effects of chemokines produced by oesophageal cells in response to gastro-oesophageal reflux, and not solely from the direct, caustic effects of refluxed gastric juice. Proton pump inhibitors (PPI) can block chemokine production through mechanisms independent of their antisecretory effects. We studied omeprazole effects on chemokine production by oesophageal epithelial cells exposed to acidic bile salts. Design Human primary and telomerase-immortalised oesophageal squamous cells were exposed to acidic bile salt medium with or without omeprazole pretreatment. Interleukin (IL)-8 expression was determined by RT-PCR and ELISA. IL-8 promoter activity was measured by luciferase reporter assay. Binding of NF-B and AP-1 subunits to the IL-8 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Immune cell migration induced by conditioned medium was determined by a double-chamber migration assay system. Results Acidic bile salt medium caused oesophageal epithelial cells to express IL-8 mRNA and protein by activating the IL-8 promoter through NF-B and AP-1 binding. Omeprazole inhibited that acidic bile salt-stimulated IL-8 expression by blocking the nuclear translocation of p65 (an NF-B subunit), and by blocking the binding of p65, c-jun and c-fos (AP-1 subunits) to the IL-8 promoter. Omeprazole also blocked the ability of conditioned medium from cells exposed to acidic bile salts to induce immune cell migration. Conclusions In oesophageal squamous epithelial cells, omeprazole inhibits IL-8 expression through effects on NF-B and AP-1 that are entirely independent of effects on gastric acid secretion. These previously unrecognised PPI effects might contribute to the healing of reflux oesophagitis.
    Keywords: Gastro-oesophageal reflux
    Print ISSN: 0017-5749
    Electronic ISSN: 1468-3288
    Topics: Medicine
    Published by BMJ Publishing Group
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-07
    Description: Regulatory T (Treg) cells have broad suppressive activity on host immunity, but the fate and function of suppressed responder T cells remains largely unknown. In the present study, we report that human Treg cells can induce senescence in responder naive and effector T cells in vitro and in vivo. Senescent responder T cells induced by human Treg cells changed their phenotypes and cytokine profiles and had potent suppressive function. Furthermore, Treg-mediated molecular control of senescence in responder T cells was associated with selective modulation of p38 and ERK1/2 signaling and cell-cycle–regulatory molecules p16, p21, and p53. We further revealed that human Treg-induced senescence and suppressor function could be blocked by TLR8 signaling and/or by specific ERK1/2 and p38 inhibition in vitro and in vivo in animal models. The results of the present study identify a novel mechanism of human Treg cell suppression that induces targeted responder T-cell senescence and provide new insights relevant for the development of strategies capable of preventing and/or reversing Treg-induced immune suppression.
    Keywords: Immunobiology
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...