GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 157 (2010): 755-764, doi:10.1007/s00227-009-1359-y.
    Description: Salps have higher filtration rates than most other holoplankton, and are capable of packaging and exporting primary production from surface waters. A method of kinematic analysis was employed to accurately measure salp feeding rates. The data were then used to explain how diverse body morphologies and swimming motions among species and lifecycle stages influence salp feeding performance. We selected five species, representing a range of morphologies and swimming styles, and used digitized outlines from video frames to measure body-shape change during a pulse cycle. Time-varying body volume was then calculated from the digitized salp outlines to estimate the amount of fluid passing through the filtering mesh. This non-invasive method produced higher feeding rates than other methods and revealed that body volume, pulse frequency and degree of contraction are important factors for determining volume filtered. Each species possessed a unique combination of these three characteristics that resulted in comparable filtration (range: 0.44 - 15.33 ml s-1) and normalized filtration rates (range: 0.21 – 1.27 s-1) across species. The convergence of different species with diverse morphologies on similar normalized filtration suggests a tendency towards a flow optimum.
    Description: This work was supported by NSF project OCE-0647723.
    Keywords: Salp ; Pelagic tunicate ; Filtration ; Volume flow rate ; Locomotion ; Kinematics ; In situ ; Morphology
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...