GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Einführung  (1)
  • Geomicrobiology.  (1)
  • Paleomarine zinc  (1)
Language
Years
  • 1
    Book
    Book
    Malden, Mass. [u.a.] : Blackwell
    Keywords: Geomicrobiology ; Geomicrobiology ; Einführung ; Geomikrobiologie ; Geomikrobiologie ; Biomineralisation ; Geomikrobiologie
    Type of Medium: Book
    Pages: X, 425, [8] S. , Ill., graph. Darst.
    Edition: 1. publ.
    ISBN: 0632054549 , 9780632054541
    DDC: 579
    RVK:
    RVK:
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geomicrobiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (443 pages)
    Edition: 1st ed.
    ISBN: 9781444309027
    DDC: 579
    Language: English
    Note: Intro -- Preface -- 1 Microbial properties and diversity -- 1.1 Classification of life -- 1.2 Physical properties of microorganisms -- 1.2.1 Prokaryotes -- 1.2.2 Eukaryotes -- 1.3 Requirements for growth -- 1.3.1 Physical requirements -- 1.3.2 Chemical requirements -- 1.3.3 Growth rates -- 1.4 Microbial diversity -- 1.5 Life in extreme environments -- 1.5.1 Hydrothermal systems -- 1.5.2 Polar environments viable population is available to seed the global -- 1.5.3 Acid environments -- 1.5.4 Hypersaline and alkaline environments -- 1.5.5 Deep-subsurface environments -- 1.5.6 Life on other planets -- 1.5.7 Panspermia -- 1.6 Summary -- 2 Microbial metabolism -- 2.1 Bioenergetics -- 2.1.1 Enzymes -- 2.1.2 Oxidation-reduction -- 2.1.3 ATP generation -- 2.1.4 Chemiosmosis -- 2.2 Photosynthesis -- 2.2.1 Pigments -- 2.2.2 The light reactions - anoxygenic photosynthesis -- 2.2.3 Classification of anoxygenic photosynthetic bacteria -- 2.2.4 The light reactions - oxygenic photosynthesis -- 2.2.5 The dark reactions -- 2.2.6 Nitrogen fixation -- 2.3 Catabolic processes -- 2.3.1 Glycolysis and fermentation -- 2.3.2 Respiration -- 2.4 Chemoheterotrophic pathways -- 2.4.1 Aerobic respiration -- 2.4.2 Dissimilatory nitrate reduction -- 2.4.3 Dissimilatory manganese reduction -- 2.4.4 Dissimilatory iron reduction -- 2.4.5 Trace metal and metalloid reductions -- 2.4.6 Dissimilatory sulfate reduction -- 2.4.7 Methanogenesis and homoacetogenesis -- 2.5 Chemolithoautotrophic pathways -- 2.5.1 Hydrogen oxidizers -- 2.5.2 Homoacetogens and methanogens -- 2.5.3 Methylotrophs -- 2.5.4 Sulfur oxidizers -- 2.5.5 Iron oxidizers -- 2.5.6 Manganese oxidizers -- 2.5.7 Nitrogen oxidizers -- 3 Cell surface reactivity and metal sorption -- 3.1 The cell envelope -- 3.1.1 Bacterial cell walls -- 3.1.2 Bacterial surface layers -- 3.1.3 Archaeal cell walls. , 3.1.4 Eukaryotic cell walls -- 3.2 Microbial surface charge -- 3.2.1 Acid-base chemistry of microbial surfaces -- 3.2.2 Electrophoretic mobility -- 3.2.3 Chemical equilibrium models -- 3.3 Passive metal adsorption -- 3.3.1 Metal adsorption to bacteria -- 3.3.2 Metal adsorption to eukaryotes -- 3.3.3 Metal cation partitioning -- 3.3.4 Competition with anions -- 3.4 Active metal adsorption -- 3.4.1 Surface stability requirements -- 3.4.2 Metal binding to microbial exudates -- 3.5 Bacterial metal sorption models -- 3.5.1 Kd coefficients -- 3.5.2 Freundlich isotherms -- 3.5.3 Langmuir isotherms -- 3.5.4 Surface complexation -- 3.5.5 Does a generalized sorption model exist? -- 3.6 The microbial role in contaminant mobility -- 3.6.1 Microbial sorption to solid surfaces -- 3.6.2 Microbial transport through porous media -- 3.7 Industrial applications based on microbial surface reactivity -- 3.7.1 Bioremediation -- 3.7.2 Biorecovery -- 3.8 Summary -- 4 Biomineralization -- 4.1 Biologically induced mineralization -- 4.1.1 Mineral nucleation and growth -- 4.1.2 Iron hydroxides -- 4.1.3 Magnetite -- 4.1.4 Manganese oxides -- 4.1.5 Clays -- 4.1.6 Amorphous silica -- 4.1.7 Carbonates -- 4.1.8 Phosphates -- 4.1.9 Sulfates -- 4.1.10 Sulfide minerals -- 4.2 Biologically controlled mineralization -- 4.2.1 Magnetite -- 4.2.2 Greigite -- 4.2.3 Amorphous silica -- 4.2.4 Calcite -- 4.3 Fossilization -- 4.3.1 Silicification -- 4.3.2 Other authigenic minerals -- 4.4 Summary -- 5 Microbial weathering -- 5.1 Mineral dissolution -- 5.1.1 Reactivity at mineral surfaces -- 5.1.2 Microbial colonization and organic reactions -- 5.1.3 Silicate weathering -- 5.1.4 Carbonate weathering -- 5.1.5 Soil formation -- 5.1.6 W eathering and global climate -- 5.2 Sulfide oxidation -- 5.2.1 Pyrite oxidation mechanisms -- 5.2.2 Biological role in pyrite oxidation -- 5.2.3 Bioleaching. , 5.2.4 Biooxidation of refractory gold -- 5.3 Microbial corrosion -- 5.3.1 Chemolithoautotrophs -- 5.3.2 Chemoheterotrophs -- 5.3.3 Fungi -- 5.4 Summary -- 6 Microbial zonation -- 6.1 Microbial mats -- 6.1.1 Mat development -- 6.1.2 Photosynthetic mats -- 6.1.3 Chemolithoautotrophic mats -- 6.1.4 Biosedimentary structures -- 6.2 Marine sediments -- 6.2.1 Organic sedimentation -- 6.2.2 An overview of sediment diagenesis -- 6.2.3 Oxic sediments -- 6.2.4 Suboxic sediments -- 6.2.5 Anoxic sediments -- 6.2.6 Preservation of organic carbon Preservation of organic carbon -- 6.2.7 Diagenetic mineralization -- 6.2.8 Sediment hydrogen concentrations -- 6.2.9 Problems with the biogeochemical zone scheme -- 6.3 Summary -- 7 Early microbial life -- 7.1 The prebiotic Earth -- 7.1.1 The Hadean environment -- 7.1.2 Origins of life -- 7.1.3 Mineral templates -- 7.2 The first cellular life forms -- 7.2.1 The chemolithoautotrophs -- 7.2.2 Deepest-branching Bacteria and Archaea -- 7.2.3 The fermenters and initial respirers -- 7.3 Evolution of photosynthesis -- 7.3.1 Early phototrophs -- 7.3.2 Photosynthetic expansion -- 7.3.3 The cyanobacteria -- 7.4 Metabolic diversification -- 7.4.1 Obligately anaerobic respirers -- 7.4.2 Continental platforms as habitats -- 7.4.3 Aerobic respiratory pathways -- 7.5 Earth's oxygenation -- 7.5.1 The changing Proterozoic environment -- 7.5.2 Eukaryote evolution -- 7.6 Summary -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geobiology 11 (2013): 295-306, doi:10.1111/gbi.12036.
    Description: Here we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models used to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario, the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case zinc’s geochemical and biological evolution may be decoupled, and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints 50 on potential couplings between the trajectory of biological and marine geochemical coevolution.
    Description: This work was supported by a NSERC Discovery Grant to KOK, a NSERC PDF to SVL, a NSERC CGSM to LJR, and an NSF-EAR-PDF to NJP. MAS acknowledges support from the Gordon and Betty Moore Foundation Grant #2724. This work was also supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to A.K. (KA 1736/4-1 and 12-1).
    Keywords: Paleomarine zinc ; Metallome evolution ; Metalloenzymes ; Eukaryotic evolution ; Iron formations
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...