GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • Cytochalasin B  (1)
Document type
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 109 (1970), S. 431-449 
    ISSN: 1432-0878
    Keywords: Contractile ring ; Cytokinesis ; Cell division ; Cytochalasin B ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Techniques of individual cell selection and precise ultramicrotomy have been employed to demonstrate that the contractile ring of cleaving HeLa cells is a transitory cytoplasmic organelle of distinctive fine structure and location. The contractile ring is an uninterrupted annulus encircling the equator of dividing cells exactly where the cleavage furrow forms. It is about 10 microns wide, up to 0.2 microns in thickness, and is composed exclusively of circumferentially aligned thin filaments 40–70 Å in diameter. Contractile ring filaments appear to be associated with the overlying plasma membrane. Controlled experiments with a mold metabolite (cytochalasin B) reveals that within a few minutes the drug abolishes the ability of HeLa cells to undergo cytokinesis. Cytochalasin B seems to decompose the contractile ring. It has no other clearly identifiable effects on other cell structures, notably the mitotic apparatus. Cytochalasin B is the only drug known which selectively inhibits cytokinesis in animal cells. In conclusion, the contractile ring is the most likely organelle responsible for cytokinesis in HeLa cells. Similar organelles probably occur in all cleaving animal cells. Successful cleavage depends upon the structural and functional integrity of the contractile ring.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 174 (1982), S. 207-216 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The ultrastructure of the “spiny” surface of Tealia crassicornis eggs is examined in detail by scanning and transmission electron microscopy in order to understand its function. Long microvilli are clustered together in spiral aggregates of 50-75 microvilli called “spires.” There are about 15,000 spires per egg. Dense bundles of microfilaments making up the cores of these microvilli are shown to be composed of actin by staining with the fluorescent dye nitrobenzoxadiazole (NBD)-phallacidin. It is postulated that the bundles of actin and the spires of microvilli are stiff and provide reinforcement to the egg surface. Such postulated properties would provide physical protection for these large eggs which, unlike the eggs of most invertebrates, appear to lack all extracellular investing coats.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...