GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 27–59, doi:10.1002/2015JC011299.
    Description: Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.
    Description: National Science Foundation (NSF). Grant Numbers: PLR-0806306 , PLR-85653100 , PLR-82486400 , PLR-1313614; NASA Advanced Supercomputing (NAS) Division; JPL Supercomputing and Visualization Facility (SVF) Grant Numbers: ARC-0806306 , ARC-85653100 , ARC-82486400; Russian Foundation of Basic Research; Ministry of the Education and Science of the Russian Federation; UK Natural Environment Research Council Grant Number: NE/I028947/
    Keywords: Arctic Ocean ; Beaufort Gyre ; Pacific Water ; Ocean dynamics ; Wind forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4696-4709, doi: 10.1029/2019JC015022.
    Description: The Beaufort Gyre is a key feature of the Arctic Ocean, acting as a reservoir for freshwater in the region. Depending on whether the prevailing atmospheric circulation in the Arctic is anticyclonic or cyclonic, either a net accumulation or release of freshwater occurs. The sources of freshwater to the Arctic Ocean are well established and include contributions from the North American and Eurasian Rivers, the Bering Strait Pacific water inflow, sea ice meltwater, and precipitation, but their contribution to the Beaufort Gyre freshwater accumulation varies with changes in the atmospheric circulation. Here we use a Lagrangian backward tracking technique in conjunction with the 1/12‐degree resolution Nucleus for European Modelling of the Ocean model to investigate how sources of freshwater to the Beaufort Gyre have changed in recent decades, focusing on increase in the Pacific water content in the gyre between the late 1980s and early 2000s. Using empirical orthogonal functions we analyze the change in the Arctic oceanic circulation that occurred between the 1980s and 2000s. We highlight a “waiting room” advective pathway that was present in the 1980s and provide evidence that this pathway was caused by a shift in the center of Ekman transport convergence in the Arctic. We discuss the role of these changes as a contributing factor to changes in the stratification, and hence potentially the biology, of the Beaufort Gyre region.
    Description: The underpinning high‐resolution NEMO simulation was performed using the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). ARIANE simulations were performed using the JASMIN data analysis environment (http://www.jasmin.ac.uk). Lagrangian analysis was carried out using computational tool ARIANE developed by B. Blanke and N. Grima. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al., 2016). The funding for A. Proshutinsky was provided by the NSF under grants supporting the Beaufort Gyre Observing System since 2003 (1845877, 1719280, 1604085) and by the Woods Hole Oceanographic Institution. Y. Aksenov was supported from the NERC Program “The North Atlantic Climate System Integrated Study (ACSIS), NE/N018044/1 and from the project “Advective pathways of nutrients and key ecological substances in the Arctic (APEAR)” NE/R012865/1, as a part of the joint UK/Germany “Changing Arctic Ocean” Programme. A. Yool and E. Popova were supported by NERC grants CLASS NE/R015953/1, and National Capability in Ocean Modelling. We acknowledge the FAMOS (http://web.whoi.edu/famos/) program for providing a framework for many fruitful discussions which thoroughly enhanced this work. Finally, we thank the two anonymous reviewers who greatly improved this work with their insightful input.
    Description: 2019-12-26
    Keywords: Beaufort Gyre ; Lagrangian modeling ; NEMO ; particle tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...