GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 122-127 
    ISSN: 1432-1939
    Keywords: Canopy gaps ; Leaf dynamics ; Seedling growth ; Shade tolerance ; Tropical rain forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaf dynamics of eight tropical rain forest species seedlings was studied in three environments: the shaded forest understorey, a small gap of ±50 m2, and a large gap of ±500 m2. Leaf production rate and leaf loss rate were enhanced in gaps, and a large gap resulted in larger increases than a small gap. For most species net leaf gain rate was larger in gaps, although this rate was not always largest in the large gap. Leaf loss decreased, and leaf survival percentages increased with increasing shade tolerance of species, indicating a slower leaf turnover for more shade tolerant species. Leaf area growth rate was only partly determined by net leaf gain rate. Ontogenetic effects on leaf size were also important, especially in the large gap. Species which possessed leaves with high specific leaf weight (SLW) showed lower leaf loss rates and higher leaf survival percentages than species with low SLW leaves. Leaf life span seemed to be related to leafcost per unit area. The relation of specific patterns in leaf production and leaf loss to the regeneration mode of the species is briefly discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 75 (1988), S. 625-632 
    ISSN: 1432-1939
    Keywords: Biomass allocation ; Canopy gaps ; Seedling growth ; Shade tolerance ; Tropical rain forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth and morphology of seedlings of ten tropical rain forest species were studied at Los Tuxtlas, Mexico. Seedlings were grown in three environmental conditions: the shaded forest understorey (FU, receiving 0.9–2.3% of the daily photosynthetic photon flux, PF, above the canopy), a small canopy gap of approx. 50 m2 (SG, receiving 2.1–6.1% of daily PF), and a large canopy gap of approx. 500 m2 (LG, receiving 38.6–53.4% of daily PF). The growth of all species was enhanced in gaps, and in LG the effect was stronger than in SG. Plants grown in LG had a sunplant morphology, with a high root-shoot ratio (R/S), a high specific leaf weight (SLW) and a low leaf area ratio (LAR). Plants grown in SG or FU showed a shade-plant morphology, with a low R/S, a low SLW and a high LAR. Growth responses varied from species unable to grow in the shade but with strong growth in the sun, to species with relatively high growth rates in both shade and sun conditions. Shade tolerant species were able to grow in the shade because of a relatively high unit leaf rate. The pioneerCecropia had a high growth rate in LG because of a high LAR. Most species showed a complex growth response in which they resembled the shade intolerant extreme in some aspects of the response, and the shade tolerant extreme in other aspects.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5052
    Keywords: Bana ; Leaves ; Phytomass ; Root/shoot ratio ; Spodosol ; Structure ; Tropical forest ; Wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bana, or Low Amazon Caatinga is an evergreen sclerophyllous woodland. It occurs on bleached quartz sands in the lowlands of SW Venezuela, where it occupies relatively small ‘islands’ amidst Tall Amazon Caatinga which is exclusively developed on tropaquods. There is an outer vegetation belt about 20 m in width in which trees over 10 m in height occur (Tall Bana); its structure and floristic composition resemble Tall Amazon Caatinga. Low Bana (maximum tree height usually below 5 m) follows next. The central part is occupied by Open Bana in which even lower trees are very widely spaced. Destructive phytomass sampling was carried out for chemical analyses in seven plots along a 150 m line across the zonation. The total dry matter of living plants including roots of Tall Bana (30–32 kg/m2) compares rather well with 41 kg/m2 in Tall Amazon Caatinga. This is only 9–14 kg/m2 in Low Bana, and 4–6 kg/m2 in Open Bana. The average root % of total phytomass increases from 41% in Tall Bana to 63% in Low Bana, and is 88% in Open Bana. Average total dry dead above-ground phytomass (including standing trees and stumps) declines from 1 kg/m2 in Tall Bana to 0.2 kg/m2 in Open Bana. An accumulation of dead matter in Low and Open Bana, relative to the above-ground phytomass of living plants, is noted and this contrasts with the general absence of raw humus in the soil. Eighty-two species of woody plants (dbh≥1 cm) were recorded on the total plot area (640 m2); 90% of the species are also known to occur in Tall Amazon Caatinga. The species number declines from 59 in Tall Bana to 18 in Open Bana. Mesophylls sensu strictu dominate in Tall Bana, while notophylls are dominant in Low and Open Bana. Herbaceous species are less numerous: most of them belong to the Araceae, Bromeliaceae, Orchidaceae, Droseraceae, Eriocaulaceae and Xyridaceae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 126 (1996), S. 167-179 
    ISSN: 1573-5052
    Keywords: Canopy gaps ; Canopy openness ; French Guiana ; Gap closure ; Gap formation ; Hemispherical photographs ; Rain forest ; Shallow soils ; Spatial patterns
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Formation and closure of canopy gaps was monitored for three years in 12 ha of primary rain forest at Nouragues, French Guiana. At the first inventory, in April 1991, 74 openings in the canopy 〉 4 m2 (sensu Brokaw 1982a) were located; 60 of these gaps were formed before January 1990. Between January 1990 and December 1993, 5 to 15 gaps were annually formed, opening 0.64–1.33% of the forest canopy each year. Of all gaps, 41% were created by a falling, snapped tree, 34% by a falling, uprooted tree, 22% by a falling branch, and 3% by a falling dead stem. A refined nearest neighbour analysis showed that gaps formed after January 1990 were clustered: uprooting of trees seemed to be related to shallow soils, and relatively many other trees fell when a tree uprooted, independent of the dbh of the uprooted tree. In 37 gaps, canopy openness in the gap centre (determined by hemispherical photographs) was monitored over three years. In 54% of the gaps, canopy openness increased in two successive years. It is reasoned that edges of especially large gaps may frequently be re-disturbed by falling trees or branches. Results suggest that gaps have closed after around 15 years. More data are needed to verify this.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...