GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • myoglobin  (2)
  • BPTI  (1)
  • Radial distribution function  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 96 (1997), S. 61-70 
    ISSN: 1432-2234
    Keywords: Key words:Fluids ; Integral equation methods ; Radial distribution function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. The first two orders of bridge diagrams, those with two and three field points, have been calculated exactly for the Lennard-Jones fluid for several isotherms. The method of calculation was one of expansion in Legendre polynomials, and the dependence of the method on the number of polynomials needed for accurate results was investigated. Thermodynamic and structural properties of the Lennard-Jones fluid calculated from integral equation methods with the inclusion of bridge diagrams were found to be systematically improved. Two attempts at predicting the missing bridge diagrams of even higher order were discussed. The first, which uses the functional form of those diagrams that were calculated exactly, showed no significant improvement. The second, a series sum based on the first two orders of calculated diagrams and motivated by the success of a similar heuristic sum in the case of hard spheres, was extremely successful. When the series sum was employed, thermodynamic and structural quantities were improved to the point where the difference between simulation results and integral equation results was of the same order as the error in the simulations themselves.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 227-233 
    ISSN: 0887-3585
    Keywords: peptide conformation ; ramachandran plot ; PDB search ; peptide dynamics ; BPTI ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A simple method is presented for projecting the conformation of extended secondary structure elements of peptides and proteins that extend over four Cαatoms onto a simple two-dimensional surface. A new set of two degrees of freedom is defined, a pseudo-dihedral involving four sequential Cαatoms, as well as the triple scalar product for the vectors describing the orientation of the three intervening peptide groups. The method provides a reduction in dimensionality, from the usual combination of multiple φ,ψ pairs to a single pair, yielding valuable information concerning the structure and dynamics of these important elements. The new two-dimensional surface is explored by reference to 63 selected protein crystal structures together with a comparison of model built peptides representing the common secondary structural elements. Dynamical aspects on this new surface are examined using a molecular dynamics trajectory of Basic Pancreatic Trypsin Inhibitor. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 18 (1994), S. 133-147 
    ISSN: 0887-3585
    Keywords: myoglobin ; simulation ; hydration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An analysis of a molecular dynamics simulation of metmyoglobin in an explicit solvent environment of 3,128 water molecules has been performed. Both statics and dynamics of the protein-solvent interface are addressed in a comparison with experiment. Three-dimensional density distributions, temperature factors, and occupancy weights are computed for the solvent by using the trajectory coordinates. Analysis of the hydration leads to the localization of more than 500 hydration sites distributed into multiple layers of solvation located between 2.6 and 6.8 Å from the atomic protein surface. After locating the local solvent density maxima or hydration sites we conclude that water molecules of hydration positions and hydration sites are distinct concepts. Both global and detailed properties of the hydration cluster around myoglobin are compared with recent neutron and X-ray data on myoglobin. Questions arising from differences between X-ray and neutron data concerning the locations of the protein-bound water are investigated. Analysis of water site differences found from X-ray and neutron experiments compared with our simulation shows that the simulation gives a way to unify the hydration picture given by the two experiments. © 1994 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 18 (1994), S. 148-160 
    ISSN: 0887-3585
    Keywords: myoglobin ; solvation ; dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The dynamics of water at the protein-solvent interface is investigated through the analysis of a molecular dynamics simulation of metmyoglobin in explicit aqueous environment. Distribution implied dynamics, harmonic and quasiharmonic, are compared with the simulated macroscopic dynamics. The distinction between distinguishable solvent molecules and hydration sites developed in the previous paper is used. The simulated hydration region within 7 Å from the protein surface is analyzed using a set of 551 hydration sites characterized by occupancy weights and temperature B-factors determined from the simulation trajectory. The precision of the isotropic harmonic and anisotropic harmonic models for the description of proximal solvent fluctuations is examined. Residence times and dipole reorientation times of water around the protein surface are compared with NMR and ESR results. A correlation between diffraction experiment quantities such as the occupancy weights and temperature factors and the residence and correlation times resulting from magnetic resonance experiments is found via comparison with simulation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...