GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 16 (2006): 2091–2122, doi:10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2.
    Description: Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O) and dinitrogen (N2), is important to primary production, water quality and the chemistry and physics of the atmosphere at ecosystem, landscape, regional and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses and future prospects for the different methods. Methodological approaches covered include; 1) acetylene-based methods, 2) 15N tracers, 3) direct N2 quantification, 4) N2/Ar ratio quantification, 5) mass balance approaches, 6) stoichiometric approaches, 7) methods based on stable isotopes, 8) in situ gradients with atmospheric environmental tracers and 9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.
    Keywords: Denitrification ; Greenhouse effect ; Nitrate ; Nitric oxide nitrogen ; Nitrous oxide ; Stable isotopes ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 822728 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: From 1967 to 1984 the Matamek Research Station, located near Sept-Iles, Quebec, was the focus of a research program on salmonid production in boreal river ecosystems. Research was conducted under the auspices of Woods Hole Oceanographic Institution and in cooperation with the Ministere du Loisir, de la Chasse et de la Peche du Quebec and representatives of several universities in Canada and the United States. One of the central activities throughout the history of the Station was monitoring of Atlantic salmon (Salmo salar) in the Matamek River. All salmon life history stages were involved, although the greatest effort was spent in estimates of parr population size at select sites and in estimates of population size, age and sex ratios of sea-run adults entering the river to spawn. Effort and methods were not consistent from year to year due to changes in program focus and improvements in techniques. Nonetheless, we believe the data represent the only long-term record for an Atlantic salmon population on the North Shore of the St. Lawrence. Heretofore, information on Atlantic salmon from the Matamek River was available only in published works or in the Matamek Annual Reports published by Woods Hole Oceanographic Institution. Because of the potential value for analyses of salmon population dynamics and life history, we have assembled the raw data, with neither analysis nor interpretation, in this report. During the period of 1980-1984, considerable effort was exerted in collecting data from original sources (field notebooks, scale envelopes, etc.) and in correcting errors in the data. We cannot, of course, guarantee complete accuracy. Nonetheless, this collection of information is the most complete and accurate compilation possible at this time. The data are presented as records for individual fish, and are ordered by date and by life history stage. We include a key to the designations of columns and to conventions used in coding data. All entries are raw data as initially recorded and coded; no analyses are available beyond those used by various individual authors in their preparation of reports or publications. While these data are made available for general use through this compilation, we request that proper acknowledgment be given the Matamek Research Program of Woods Hole Oceanographic Institution, under whose directorship this compilation was accomplished.
    Description: Funding was provided by the Department of Commerce, NOAA National Sea Grant College Program under contract Number NABO-AA-D-00077.
    Keywords: Atlantic salmon ; Fish populations
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...