GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Athina Mud Volcano; Center for Marine Environmental Sciences; GeoB11319-1; Isotope ratio mass spectrometry; Lithology/composition/facies; M70/3; MARUM; Meteor (1986); ROCK; Rock sample; Sample ID; Visual description; δ13C, calcite; δ18O, calcite  (1)
  • Center for Marine Environmental Sciences; MARUM  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tamborrino, Leonardo; Himmler, Tobias; Elvert, Marcus; Conti, Daniel; Gualtieri, Alessandro F; Fontana, Daniela; Bohrmann, Gerhard (2019): Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea. Marine and Petroleum Geology, 107, 20-31, https://doi.org/10.1016/j.marpetgeo.2019.05.003
    Publication Date: 2023-03-03
    Description: Tubular carbonate conduits (TCC) represent the termination of fluid plumbing systems in environments of hydrocarbon seepage and play a relevant role in the discharge of methane from sub-seafloor sediments to the water column. However, the biogeochemical reactions and biological activities involved in their formation are not fully understood. To address this, TCC samples were collected with a remotely operated vehicle from the seabed on the SW flank of the Athina mud volcano in the eastern Mediterranean Sea. Petrographic, mineralogical, stable carbon and oxygen isotope and lipid biomarker analyses were performed to elucidate the formation processes of the tubular carbonates. Clotted and fibrous aragonite form the internal lining of the cavities, while the outer portion of the tubes is formed by micritic Mg-calcite cementing hemipelagic sediment. 13C-depleted Mg-calcite and aragonite (as low as −14.4‰ V-PDB) and lipid biomarkers (archaeol, −89.8‰ V-PDB) indicate that carbonate precipitation was influenced by sulfate-dependent anaerobic oxidation of methane (AOM). AOM locally enhances aragonite precipitation, thereby facilitating early lithification of the conduits within the mud volcano sediments. The size and morphology of the TCC comparable with the buried portion of tubeworm colonies found in the proximity of the sampling site. However, our results suggest that TCC likely formed by the action of burrowing organism rather than being mineralizations of the tubeworm colonies. This study provides new insights into the interpretation and understanding of TCC, highlighting the role of macrofaunal activity in the formation of migration pathways for hydrocarbon-rich fluids on the flank of a mud volcano.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-03
    Description: Tubular carbonate conduits (TCC) are exposed on a secondary terrace at the SW Peak of Athina mud volcanoes Anaximander Mountains, eastern Mediterranean Sea. Three carbonatic phases compose the TCC sampled at Athina mud volcano: the micritic high-Mg-calcite, the clotted and fibrous aragonite and the detrital infilling. The stable isotopes of carbon and oxygen data from the sample studied show the influence of the anaerobic oxydation of methane in the formation of TCC.
    Keywords: Athina Mud Volcano; Center for Marine Environmental Sciences; GeoB11319-1; Isotope ratio mass spectrometry; Lithology/composition/facies; M70/3; MARUM; Meteor (1986); ROCK; Rock sample; Sample ID; Visual description; δ13C, calcite; δ18O, calcite
    Type: Dataset
    Format: text/tab-separated-values, 80 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...