GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Altimetry  (1)
  • Climate information
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stammer, D., Bracco, A., AchutaRao, K., Beal, L., Bindoff, N. L., Braconnot, P., Cai, W., Chen, D., Collins, M., Danabasoglu, G., Dewitte, B., Farneti, R., Fox-Kemper, B., Fyfe, J., Griffies, S. M., Jayne, S. R., Lazar, A., Lengaigne, M., Lin, X., Marsland, S., Minobe, S., Monteiro, P. M. S., Robinson, W., Roxy, M. K., Rykaczewski, R. R., Speich, S., Smith, I. J., Solomon, A., Storto, A., Takahashi, K., Toniazzo, T., & Vialard, J. Ocean climate observing requirements in support of climate research and climate information. Frontiers in Marine Science, 6, (2019): 444, doi:10.3389/fmars.2019.00444.
    Description: Natural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
    Description: This work was partly supported by the DFG funded excellence center CliSAP of the Universituat Hamburg (DS). AB was supported by the National Science Foundation through award NSF-1658174 and by the NOAA through award NA16OAR4310173. SM was supported by the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program.
    Keywords: Ocean observing system ; Ocean climate ; Earth observations ; In situ measurements ; Satellite observations ; Ocean modeling ; Climate information
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Koehl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A., von Schuckmann, K., Speich, S., Stephens, G., Wang, G., Wijffels, S. E., & Zilberman, N. Measuring global ocean heat content to estimate the Earth energy Imbalance. Frontiers in Marine Science, 6, (2019): 432, doi: 10.3389/fmars.2019.00432.
    Description: The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4–1 Wm–2). This imbalance is coined Earth’s Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
    Description: GJ was supported by the NOAA Research. MP and RK were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research centre between QNLM and CSIRO. CD and AS were funded by the Australian Research Council (FT130101532 and DP160103130) and its Centre of Excellence for Climate Extremes (CLEX). IQuOD team members (TB, RC, LC, CD, VG, MI, MP, and SW) were supported by the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by the National SCOR Committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), as well as the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. ZZ was supported by the National Aeronautics and Space Administration (NNX17AH14G). LC was supported by the National Key Research and Development Program of China (2017YFA0603200 and 2016YFC1401800).
    Keywords: Ocean heat content ; Sea level ; Ocean mass ; Ocean surface fluxes ; ARGO ; Altimetry ; GRACE ; Earth Energy Imbalance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...