GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boron/Calcium ratio; Boron hydroxide/Bicarbonate ratio; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; DATE/TIME; DISTANCE; EPOCA; European Project on Ocean Acidification; Experimental treatment; Measured; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Metrohm, 826 pH mobile); Salinity; see reference(s); Site; Species; Temperature, standard deviation; Temperature, water; Titration potentiometric; δ11B  (1)
  • Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Buoyant weighing technique according to Davies (1989); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Infrared gas analyzer (LI-COR 196SA); Laboratory experiment; Marubini_etal_08; Measured; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Radiation, photosynthetically active; Salinity; Single species; Stylophora pistillata; Temperate; Temperature, water; Titration potentiometric (Metler-Toledo)  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trotter, Julie; Montagna, Paolo; McCulloch, Malcolm T; Silenzi, Sergio; Reynaud, Stéphanie; Mortimer, Graham; Martin, Sophie; Ferrier-Pagès, Christine; Gattuso, Jean-Pierre; Rodolfo-Metalpa, Riccardo (2011): Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth and Planetary Science Letters, 303, 163-173, https://doi.org/10.1016/j.epsl.2011.01.030
    Publication Date: 2023-03-14
    Description: Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 〉 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boron/Calcium ratio; Boron hydroxide/Bicarbonate ratio; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; DATE/TIME; DISTANCE; EPOCA; European Project on Ocean Acidification; Experimental treatment; Measured; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Metrohm, 826 pH mobile); Salinity; see reference(s); Site; Species; Temperature, standard deviation; Temperature, water; Titration potentiometric; δ11B
    Type: Dataset
    Format: text/tab-separated-values, 29568 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marubini, Francesca; Ferrier-Pagès, Christine; Furla, Paola; Allemand, Denis (2008): Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs, 27(3), 491-499, https://doi.org/10.1007/s00338-008-0375-6
    Publication Date: 2024-03-15
    Description: The decrease in the saturation state of seawater, following seawater acidification, is believed to be the main factor leading to a decrease in the calcification of marine organisms. To provide a physiological explanation for this phenomenon, the effect of seawater acidification was studied on the calcification and photosynthesis of the scleractinian tropical coral Stylophora pistillata. Coral nubbins were incubated for 8 days at three different pH (7.6, 8.0, and 8.2). To differentiate between the effects of the various components of the carbonate chemistry (pH, CO32, HCO3, CO2), tanks were also maintained under similar pH, but with 2-mM HCO3 added to the seawater. The addition of 2-mM bicarbonate significantly increased the photosynthesis in S. pistillata, suggesting carbon-limited conditions. Conversely, photosynthesis was insensitive to changes in pH and pCO2. Seawater acidification decreased coral calcification by ca. 0.1-mg CaCO3 g-1 d-1 for a decrease of 0.1 pH units. This correlation suggested that seawater acidification affected coral calcification by decreasing the availability of the CO32 substrate for calcification. However, the decrease in coral calcification could also be attributed either to a decrease in extra- or intracellular pH or to a change in the buffering capacity of the medium, impairing supply of CO32 from HCO3.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Buoyant weighing technique according to Davies (1989); Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Infrared gas analyzer (LI-COR 196SA); Laboratory experiment; Marubini_etal_08; Measured; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Radiation, photosynthetically active; Salinity; Single species; Stylophora pistillata; Temperate; Temperature, water; Titration potentiometric (Metler-Toledo)
    Type: Dataset
    Format: text/tab-separated-values, 102 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...