GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Deep-sea; Dendrophyllia cornigera; Density, skeletal bulk; Desmophyllum dianthus; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Identification; Incubation duration; Laboratory experiment; Lipids, total; Mass; Mediterranean Sea; OA-ICC; Ocean Acidification International Coordination Centre; Organic matter; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porosity; Potentiometric titration; Salinity; Salinity, standard deviation; Single species; Size; Species; Spectrophotometric; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment  (1)
  • Atlantic Ocean; Calculated using AquaEnv R package; Calculated using respR R package; DATE/TIME; Dendrophyllia_Bycatch; Experimental treatment; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; NE Atlantic; NW Spain; Oxygen, dissolved; Oxygen saturation; Oxygen sensor, Atlas Scientific Lab grade; pH; pH sensor, Atlas Scientific, lab grade; Temperature, water; Thermometer, PT100; Type of study  (1)
  • Buoyant weighing technique according to Davies (1989); Dendrophyllia_cornigera_Coral_Bycatch_A_Coruna; Dendrophyllia cornigera; Dendrophyllia cornigera, skeletal growth rate; Experimental treatment; growth; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; Multiple stressors; NE Atlantic; North Atlantic Ocean; NW Spain; Replicate; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Type of study  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-23
    Description: A 9-month aquarium experiment with the cold-water Dendrophyllia cornigera was conducted to investigate the single and combined effects of warming, acidification and deoxygenation on its ecophysiological response. The experiment took place at the Aquarium finisterrae (A Coruña, Spain) between 2022-05-06 and 2023-02-24. Treatment values for each parameter (current in situ vs. climate change) were: 12 °C and 15 °C (temperature); ~7.99 and 7.69 (pH); ~8.63 mg/L and 6.45 mg/L (dissolved oxygen concentration). A total of eight treatments (with 3 replicates each, 5 L aquaria) were set up. Dry mass of the coral nubbins (3 per experimental aquarium) was assessed by means of the buoyant weight technique (Jokiel et al. 1978, Davies, 1989), using an analytical balance (OHAUS AX124, precision 0.1 mg). The dry mass was calculated considering the nubbin net weight in water, the water density and the skeletal density of D. cornigera (2.63 g/cm3; Movilla et al. 2014). Measurements were performed just once the acclimation time finished and after 2 , 4, 6 and 9 months under the experimental conditions. Skeletal growth rates were calculated as the slope of the linear regression between the logarithmically transformed dry mass and the experimental time (%/day) (Orejas et al. 2011).
    Keywords: Buoyant weighing technique according to Davies (1989); Dendrophyllia_cornigera_Coral_Bycatch_A_Coruna; Dendrophyllia cornigera; Dendrophyllia cornigera, skeletal growth rate; Experimental treatment; growth; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; Multiple stressors; NE Atlantic; North Atlantic Ocean; NW Spain; Replicate; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Specimen identification; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 576 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Movilla, Juancho; Orejas, Covadonga; Calvo, Eva; Gori, Andrea; Lopez-Sanz, Angel; Grinyó, Jordi; Domínguez-Carrió, Carlos; Pelejero, Carles (2014): Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs, 33(3), 675-686, https://doi.org/10.1007/s00338-014-1159-9
    Publication Date: 2024-03-19
    Description: Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Deep-sea; Dendrophyllia cornigera; Density, skeletal bulk; Desmophyllum dianthus; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Identification; Incubation duration; Laboratory experiment; Lipids, total; Mass; Mediterranean Sea; OA-ICC; Ocean Acidification International Coordination Centre; Organic matter; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porosity; Potentiometric titration; Salinity; Salinity, standard deviation; Single species; Size; Species; Spectrophotometric; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 12732 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-19
    Description: A 9-month aquarium experiment with the cold-water Dendrophyllia cornigera was conducted to investigate the single and combined effects of warming, acidification and deoxygenation on its ecophysiological response. The experiment took place at the Aquarium finisterrae (A Coruña, Spain) between 2022-05-06 and 2023-02-24. Treatment values for each parameter (current in situ vs. climate change) were: 12 °C and 15 °C (temperature); ~7.99 and 7.69 (pH); ~8.63 mg/L and 6.45 mg/L (dissolved oxygen concentration). A total of eight treatments (with 3 replicates each, 5 L aquaria) were set up. Raspberry-based controllers were set to modify and monitor the water temperature, pH and dissolved oxygen in every treatment. Values for temperature (ºC), pH (NBS scale) and oxygen (% air saturation) were registered every 15 minutes in a database. The parameters were measured using PT100 temperature sensors, and Atlas Scientific Lab Grade pH and Dissolved Oxygen sensors. Every set of sensors was placed on each header tank, corresponding to each treatment (8 in total). Parameter setpoint values for each header tank were finely adjusted on the controller to ensure the treatment target values on each experimental aquaria. Oxygen sensors from treatments with ambient oxygen (~8.63 mg/L) were removed from the system due to calibration issues. Here, an example of the results for temperature, pH and oxygen for every header tank over 24 hours on 31st of December 2022 is presented. Values for pH (total scale) and dissolved oxygen (mg/L) were calculated using AquaEnv (Hofmann et al. 2010) and respR (Harianto et al. 2019) R packages, respectively, using the in situ temperature and salinity (35.1).
    Keywords: Atlantic Ocean; Calculated using AquaEnv R package; Calculated using respR R package; DATE/TIME; Dendrophyllia_Bycatch; Experimental treatment; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; NE Atlantic; NW Spain; Oxygen, dissolved; Oxygen saturation; Oxygen sensor, Atlas Scientific Lab grade; pH; pH sensor, Atlas Scientific, lab grade; Temperature, water; Thermometer, PT100; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 3984 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...