GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acropora verweyi; Animalia; Benthic animals; Benthos; Biomass/Abundance/Elemental composition; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Galaxea fascicularis; Growth/Morphology; Laboratory experiment; Marubini_etal_03; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Pavona cactus; Single species; Temperate; Turbinaria reniformis  (1)
Document type
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marubini, Francesca; Ferrier-Pagès, Christine; Cuif, Jean-Pierre (2003): Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proceedings of the Royal Society B-Biological Sciences, 270(1511), 179-184, https://doi.org/10.1098/rspb.2002.2212
    Publication Date: 2023-05-12
    Description: Biogenic calcification is influenced by the concentration of available carbonate ions. The recent confirmation of this for hermatypic corals has raised concern over the future of coral reefs because [CO3] is a decreasing function of increasing pCO2 in the atmosphere. As one of the overriding features of coral reefs is their diversity, understanding the degree of variability between species in their ability to cope with a change in [CO3] is a priority. We cultured four phylogenetically and physiologically different species of hermatypic coral (Acropora verweyi, Galaxea fascicularis, Pavona cactus and Turbinaria reniformis) under 'normal' (280 µmol/kg) and 'low' (140 µmol/kg) carbonate-ion concentrations. The effect on skeletogenesis was investigated quantitatively (by calcification rate) and qualitatively (by microstructural appearance of growing crystalline fibres using scanning electron microscopy (SEM)). The 'low carbonate' treatment resulted in a significant suppression of calcification rate and a tendency for weaker crystallization at the distal tips of fibres. However, while the calcification rate was affected uniformly across species (13-18% reduction), the magnitude of the microstructural response was highly species specific: crystallization was most markedly affected in A. verweyi and least in T. reniformis. These results are discussed in relation to past records and future predictions of carbonate variability in the oceans.
    Keywords: Acropora verweyi; Animalia; Benthic animals; Benthos; Biomass/Abundance/Elemental composition; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Galaxea fascicularis; Growth/Morphology; Laboratory experiment; Marubini_etal_03; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Pavona cactus; Single species; Temperate; Turbinaria reniformis
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...