GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AA; Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Autoanalyzer; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Electron transport rate of photosystem II; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Light:Dark cycle; Maximum photochemical quantum yield of photosystem II; Nutrient uptake rate, per chlorophyll; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Primary production/Photosynthesis; pulse-amplitude-modulated chlorophyll fluorometry (diving PAM, Waltz, Germany); Radiation, photosynthetically active; Red Sea; Salinity; see reference(s); Single species; Spectrofluorometry; Spectrophotometry; Stylophora pistillata; Stylophora pistillata, chlorophyll; Stylophora pistillata, protein content; Stylophora pistillata, zooxanthellate cell density; Temperature; Temperature, water  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boron/Calcium ratio; Boron hydroxide/Bicarbonate ratio; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; DATE/TIME; DISTANCE; EPOCA; European Project on Ocean Acidification; Experimental treatment; Measured; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Metrohm, 826 pH mobile); Salinity; see reference(s); Site; Species; Temperature, standard deviation; Temperature, water; Titration potentiometric; δ11B  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trotter, Julie; Montagna, Paolo; McCulloch, Malcolm T; Silenzi, Sergio; Reynaud, Stéphanie; Mortimer, Graham; Martin, Sophie; Ferrier-Pagès, Christine; Gattuso, Jean-Pierre; Rodolfo-Metalpa, Riccardo (2011): Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth and Planetary Science Letters, 303, 163-173, https://doi.org/10.1016/j.epsl.2011.01.030
    Publication Date: 2023-03-14
    Description: Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 〉 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boron/Calcium ratio; Boron hydroxide/Bicarbonate ratio; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Carbon dioxide, standard deviation; DATE/TIME; DISTANCE; EPOCA; European Project on Ocean Acidification; Experimental treatment; Measured; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Metrohm, 826 pH mobile); Salinity; see reference(s); Site; Species; Temperature, standard deviation; Temperature, water; Titration potentiometric; δ11B
    Type: Dataset
    Format: text/tab-separated-values, 29568 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Godinot, Claire; Houlbrèque, Fanny; Grover, Renaud; Ferrier-Pagès, Christine (2011): Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 6(9), e25024, https://doi.org/10.1371/journal.pone.0025024
    Publication Date: 2024-03-15
    Description: The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT(8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT(7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.
    Keywords: AA; Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Autoanalyzer; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Containers and aquaria (20-1000 L or 〈 1 m**2); Electron transport rate of photosystem II; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Laboratory strains; Light:Dark cycle; Maximum photochemical quantum yield of photosystem II; Nutrient uptake rate, per chlorophyll; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH meter (Metrohm, 826 pH mobile); Primary production/Photosynthesis; pulse-amplitude-modulated chlorophyll fluorometry (diving PAM, Waltz, Germany); Radiation, photosynthetically active; Red Sea; Salinity; see reference(s); Single species; Spectrofluorometry; Spectrophotometry; Stylophora pistillata; Stylophora pistillata, chlorophyll; Stylophora pistillata, protein content; Stylophora pistillata, zooxanthellate cell density; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 10336 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...