GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-21
    Description: The growth and decay mechanisms of barrier layers in the northwestern tropical Atlantic are studied by investigating small‐scale processes embedded in the regional circulation of the tropical Atlantic using output from an eddy‐resolving numerical simulation at 4 km resolution forced by an atmospheric reanalysis. The simulation reproduces well the temporal and spatial patterns of barrier layer thickness (BLT) estimated with Argo and CTD in situ profiles. As seen from an analysis of the salinity and temperature vertical gradient balances, localized large barrier layers form inside North Brazil Current rings during late‐June to July because of a thickening of the isothermal layer in the rings due to horizontal temperature advection, stretching of isotherms and tilting of temperature fronts. These barrier layers decay when the isothermal layer reduces again due to the above mechanisms. Further to the north, along the North Equatorial Current, the seasonal variability of BLT is highly pronounced. Thick winter (January to early March) barrier layers locally grow as the base of the mixed layer shoals mainly due to a tilting of the salinity fronts and partly due to stretching of the isohalines, horizontal salt advection and vertical turbulent mixing. The short‐term barrier layers in this case decay due to a deepening of the mixed layer, whereas they get completely eroded in spring by a shoaling of the isothermal layer due to surface temperature stratification. This work highlights that barrier layers are localized phenomena at times growing solely due to ocean dynamics, without a surface freshwater influx.
    Description: Plain Language Summary: Oceanic barrier layers exist in regions where salinity is more dominant than temperature in determining upper ocean density. Those layers lie between the bases of a constant‐density layer and a constant‐temperature layer. Barrier layers prevent vertical exchange of energy and mass between the near‐surface and the deep ocean, thus influencing air‐sea interaction. In the western tropical Atlantic, a warmer sea surface due to the presence of barrier layers can fuel hurricanes. Freshwater from the Amazon River and rainfall facilitate the growth of barrier layers, but the dynamics of their evolution are unclear. In this work, we identify/quantify the growth and decay mechanisms of barrier layers using a 4 km resolution simulation. Barrier layers grow/decay inside North Brazil Current eddies in summer because of deepening/shoaling of the constant‐temperature layer inside the eddies due to horizontal heat transport. Further north, barrier layers grow in winter as the constant‐density layer shoals mainly due to northwestward surface freshwater flow and equatorward subsurface salty water flow. Those barrier layers decay when the constant‐density layer deepens, whereas are destroyed when the constant‐temperature layer shoals in spring due to surface heating. These novel results improve the knowledge on barrier layers and help representing them in climate models.
    Description: Key Points: The North Brazil and North Equatorial Currents are two regions with quasi‐permanent barrier layers in the northwestern tropical Atlantic Large barrier layer thickness (BLT) within the rings occurs during June‐July due to a thickening of the isothermal layer within the eddies Large winter BLT in North Equatorial Current is due to tilting of salinity fronts, stretching of isohalines, advection and turbulent mixing
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551.46 ; northwestern tropical Atlantic ; barrier layers
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Koehl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A., von Schuckmann, K., Speich, S., Stephens, G., Wang, G., Wijffels, S. E., & Zilberman, N. Measuring global ocean heat content to estimate the Earth energy Imbalance. Frontiers in Marine Science, 6, (2019): 432, doi: 10.3389/fmars.2019.00432.
    Description: The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4–1 Wm–2). This imbalance is coined Earth’s Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
    Description: GJ was supported by the NOAA Research. MP and RK were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research centre between QNLM and CSIRO. CD and AS were funded by the Australian Research Council (FT130101532 and DP160103130) and its Centre of Excellence for Climate Extremes (CLEX). IQuOD team members (TB, RC, LC, CD, VG, MI, MP, and SW) were supported by the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by the National SCOR Committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580), as well as the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. ZZ was supported by the National Aeronautics and Space Administration (NNX17AH14G). LC was supported by the National Key Research and Development Program of China (2017YFA0603200 and 2016YFC1401800).
    Keywords: Ocean heat content ; Sea level ; Ocean mass ; Ocean surface fluxes ; ARGO ; Altimetry ; GRACE ; Earth Energy Imbalance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...