GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (5)
Document type
Publisher
Years
  • 1
    Publication Date: 2014-09-13
    Description: Purpose Sinusoidal gradient oscillations in the kilohertz range are proposed for position tracking of NMR probes and prospective motion correction for arbitrary imaging sequences without any alteration of sequence timing. The method is combined with concurrent field monitoring to robustly perform image reconstruction in the presence of potential dynamic field deviations. Methods Benchmarking experiments were done to assess the accuracy and precision of the method and to compare it with theoretical predictions based on the field probe's time-dependent signal-to-noise ratio. An array of four field probes was used to perform real-time prospective motion correction in vivo. Images were reconstructed based on both predetermined and concurrently measured k-space trajectories. Results For observation windows of 4.8 ms, the precision of probe position determination was found to be 35 to 62 µm, and the maximal measurement error was 595 µm root-mean-square on a single axis. Sequence update per repetition time on this basis yielded images free of conspicuous artifacts despite substantial head motion. Predetermined and concurrently observed k-space trajectories yielded equivalent image quality. Conclusion NMR field probes in conjunction with gradient tones permit the tracking and prospective correction of rigid-body motion. Relying on gradient oscillations in the kilohertz range, the method allows for concurrent motion detection and image encoding. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-17
    Description: Purpose Zero echo time (ZTE) imaging is a robust and silent 3D radial technique suitable for direct MRI of tissues with very rapid transverse relaxation. Given its successful application on micro- and animal MRI systems, the purpose of this work is to enable and demonstrate ZTE imaging in humans using a whole-body magnet. Methods A commercial 7 T MRI scanner was complemented by rapid high-power transmit-receive switches, a custom-built spectrometer, and a proton-free detector coil. With this setup, transmit-receive switching is achieved within 1 µs, radiofrequency (RF) excitation is performed in 3 µs, and digital bandpass filtering takes 5.3 µs, resulting in an effective dead time of only 5 µs. Results ZTE imaging was performed at 250 and 500 kHz bandwidth with central k-space gaps of 1.2 and 2.5 Nyquist intervals and repetition times of 739 and 471 µs. The technique was applied for silent 3D imaging of the head and joints of human volunteers at an isotropic resolution down to 0.83 mm. A sound pressure level of 41 dB(A) was measured, which is a reduction of more than 40 dB(A) compared to gradient-switched MRI. Conclusion ZTE imaging in humans was demonstrated for the first time, enabled by dedicated, high-performing RF hardware. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-06
    Description: Purpose Magnetic field fluctuations caused by subject motion, such as breathing or limb motion, can degrade image quality in brain MRI, especially at high field strengths. The purpose of this study was to investigate the feasibility of retrospectively correcting for such physiological field perturbations based on concurrent field monitoring. Theory and Methods High-resolution T2*-weighted gradient-echo images of the brain were acquired at 7T with subjects performing different breathing and hand movement patterns. Field monitoring with a set of 19 F NMR probes distributed around the head was performed in two variants: concurrently with imaging or as a single field measurement per readout. The measured field fluctuations were then accounted for in the image reconstruction. Results Significant field fluctuations due to motion were observed in all subjects, resulting in severe artifacts in uncorrected images. The artifacts were largely removed by reconstruction based on field monitoring. Accounting for field perturbations up to the 1st spatial order was generally sufficient to recover good image quality. Conclusions It has been demonstrated that artifacts due to physiologically induced dynamic field perturbations can be greatly reduced by retrospective image correction based on field monitoring. The necessity to perform such correction is greatest at high fields and for field-sensitive techniques such as T2*-weighted imaging. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-14
    Description: Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via 19 F NMR and simultaneously pick up RF pulses in the MRI system's 1 H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd. By using NMR field probes in conjunction with broadband RF receivers, a stand-alone monitoring unit measuring RF pulses and gradient waveforms concurrently and with common timing was built. The unit can capture the field dynamics of multi-channel RF transmission systems without the need for dedicated RF pickups, and delivers a comprehensive sequence depiction as it is executed by the scanner. These abilities are exemplified by monitoring typically challenging applications such bSSFP, UTE and spatially selective parallel transmission pulses at 7 T.
    Print ISSN: 0952-3480
    Electronic ISSN: 1099-1492
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-31
    Description: Purpose MRI of tissues with short coherence lifetimes T 2 or can be performed efficiently using zero echo time (ZTE) techniques such as algebraic ZTE, pointwise encoding time reduction with radial acquisition (PETRA), and water- and fat-suppressed proton projection MRI (WASPI). They share the principal challenge of recovering data in central k-space missed due to an initial radiofrequency dead time. The purpose of this study was to compare the three techniques directly, with a particular focus on their behavior in the presence of ultra–short-lived spins. Methods The most direct comparison was enabled by aligning acquisition and reconstruction strategies of the three techniques. Image quality and short- performance were investigated using point spread functions, 3D simulations, and imaging of phantom and bone samples with short (〈1 ms) and ultra-short (〈100 μs) . Results Algebraic ZTE offers favorable properties but is limited to k-space gaps up to approximately three Nyquist dwells. At larger gaps, PETRA enables robust imaging with little compromise in image quality, whereas WASPI may be prone to artifacts from ultra-short species. Conclusion For small k-space gaps (〈4 dwells) and much larger than the dead time, all techniques enable artifact-free short- MRI. However, if these requirements are not fulfilled careful consideration is needed and PETRA will generally achieve better image quality. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
    Print ISSN: 0740-3194
    Electronic ISSN: 1522-2594
    Topics: Medicine
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...