GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (1)
  • 1
    Publication Date: 2017-09-01
    Description: Methane is a potent greenhouse gas and large-scale rapid release of methane from hydrate may have contributed to past abrupt climate change inferred from the geological record. The discovery in 2008 of over 250 plumes of methane gas escaping from the seabed of the West Svalbard continental margin at ~400 m water depth (mwd) suggests that hydrate is dissociating in the present-day Arctic. Here we model the dynamic response of hydrate-bearing sediments over a period of 2300 years and investigate ocean warming as a possible cause for present-day and likely future dissociation of hydrate, within 350–800 mwd, west of Svalbard. Future temperatures are given by two climate models, HadGEM2 and CCSM4, and scenarios, Representative Concentration Pathways (RCPs) 8.5 and 2.6. Our results suggest that over the next three centuries 5.3–29 Gg yr−1 of methane may be released to the Arctic Ocean on the West Svalbard margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...