GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Change Biology, Wiley, Vol. 28, No. 9 ( 2022-05), p. 3110-3144
    Abstract: Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km 2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km 2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 26, No. 11 ( 2020-11), p. 6616-6629
    Abstract: Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, Wiley, Vol. 28, No. 10 ( 2022-05), p. 3411-3425
    Abstract: In Arctic regions, thawing permafrost soils are projected to release 50 to 250 Gt of carbon by 2100. This data is mostly derived from carbon‐rich wetlands, although 71% of this carbon pool is stored in faster‐thawing mineral soils, where ecosystems close to the outer boundaries of permafrost regions are especially vulnerable. Although extensive data exists from currently thawing sites and short‐term thawing experiments, investigations of the long‐term changes following final thaw and co‐occurring drainage are scarce. Here we show ecosystem changes at two comparable tussock tundra sites with distinct permafrost thaw histories, representing 15 and 25 years of natural drainage, that resulted in a 10‐fold decrease in CH 4 emissions (3.2 ± 2.2 vs. 0.3 ± 0.4 mg C‐CH 4  m −2  day −1 ), while CO 2 emissions were comparable. These data extend the time perspective from earlier studies based on short‐term experimental drainage. The overall microbial community structures did not differ significantly between sites, although the drier top soils at the most advanced site led to a loss of methanogens and their syntrophic partners in surface layers while the abundance of methanotrophs remained unchanged. The resulting deeper aeration zones likely increased CH 4 oxidation due to the longer residence time of CH 4 in the oxidation zone, while the observed loss of aerenchyma plants reduced CH 4 diffusion from deeper soil layers directly to the atmosphere. Our findings highlight the importance of including hydrological, vegetation and microbial specific responses when studying long‐term effects of climate change on CH 4 emissions and underscores the need for data from different soil types and thaw histories.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecological Research, Wiley, Vol. 37, No. 6 ( 2022-11), p. 722-737
    Abstract: Alpine ecosystems harbor remarkably diverse and distinct plant communities that are characteristically limited to harsh, and cold climatic conditions. As a result of thermal limitation to species occurrence, mountainous ecosystems are considered to be particularly sensitive to climate change. Our understanding of the impact of climate change is mainly based on vascular plants however, whereas cryptogams (i.e., lichens and bryophytes) are generally neglected or simply considered as one functional group. Here we aimed to improve our understanding of the drivers underlying temporal changes in vegetation of alpine ecosystems. To this end, we repeatedly surveyed the vegetation on four mountain summits along an elevational gradient in northern Sweden spanning a 19‐year period. Our results show that the vascular plant communities remained relatively stable throughout the study period, despite fluctuations in terms of ground cover and species richness of shrubs and graminoids. In contrast, both lichens and bryophytes substantially decreased in cover and diversity, leading to alterations in community composition that were unrelated to vascular plant cover. Thermophilization of the vascular plant community was found only on the two intermediate summits. Our findings are only partially consistent with (long‐term) climate‐change impacts, and we argue that local non‐climatic drivers such as herbivory might offset vegetation responses to warming. Hence, we underline the importance of considering local non‐climatic drivers when evaluating temporal vegetation change in biologically complex systems.
    Type of Medium: Online Resource
    ISSN: 0912-3814 , 1440-1703
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2023900-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Global Change Biology, Wiley, Vol. 25, No. 5 ( 2019-05), p. 1704-1716
    Abstract: Vast amounts of carbon are bound in both active layer and permafrost soils in the Arctic. As a consequence of climate warming, the depth of the active layer is increasing in size and permafrost soils are thawing. We hypothesize that pulses of biogenic volatile organic compounds are released from the near‐surface active layer during spring, and during late summer season from thawing permafrost, while the subsequent biogeochemical processes occurring in thawed soils also lead to emissions. Biogenic volatile organic compounds are reactive gases that have both negative and positive climate forcing impacts when introduced to the Arctic atmosphere, and the knowledge of their emission magnitude and pattern is necessary to construct reliable climate models. However, it is unclear how different ecosystems and environmental factors such as drainage conditions upon permafrost thaw affect the emission and compound composition. Here we show that incubations of frozen B horizon of the active layer and permafrost soils collected from a High Arctic heath and fen release a range of biogenic volatile organic compounds upon thaw and during subsequent incubation experiments at temperatures of 10°C and 20°C. Meltwater drainage in the fen soils increased emission rates nine times, while having no effect in the drier heath soils. Emissions generally increased with temperature, and emission profiles for the fen soils were dominated by benzenoids and alkanes, while benzenoids, ketones, and alcohols dominated in heath soils. Our results emphasize that future changes affecting the drainage conditions of the Arctic tundra will have a large influence on volatile emissions from thawing permafrost soils – particularly in wetland/fen areas.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...