GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Totowa, NJ :Humana Press,  (1)
Document type
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    Totowa, NJ :Humana Press,
    Keywords: Pharmaceutical technology. ; Electronic books.
    Description / Table of Contents: This book details current trends and state-of-the-art in cell and gene based therapies. Examples from various organs and diseases illustrate the potential benefit obtained when both therapeutic approaches are combined with delivery strategies.
    Type of Medium: Online Resource
    Pages: 1 online resource (712 pages)
    Edition: 1st ed.
    ISBN: 9781627034173
    Language: English
    Note: Intro -- Preface -- About the Authors -- Contents -- Contributors -- Chapter 1: The Mechanism of Stem Cell Differentiation into Smooth Muscle Cells -- 1.1 Introduction -- 1.2 Smooth Muscle Cell Phenotypic Switching in Atherosclerosis -- 1.3 Smooth Muscle Progenitors -- 1.4 Smooth Muscle Cell Differentiation Mechanism -- 1.5 Microenvironment and Integrins in SMC Differentiation -- 1.6 Regulation of SMC Differentiation by TGF- b -- 1.7 PDGFs and SMC Differentiation -- 1.8 Epigenetic Modifications and HDAC Signalling -- 1.9 Nox4 and Nrf3 in SMC Differentiation -- 1.10 MicroRNA and SMC Differentiation -- 1.11 Perspective in Therapeutic Potential -- References -- Chapter 2: Recent Advances in Embryonic Stem Cell Engineering Toward Tailored Lineage Differentiation -- 2.1 Introduction -- 2.2 Engineering ESC Niche for Tailored Cellular Differentiation -- 2.2.1 Physical Strategies to Optimize ESC Niche -- 2.2.1.1 Geometrical Constraint -- 2.2.1.2 External Mechanical Stimulation -- 2.2.1.3 Physical Properties of Matrix -- 2.2.2 Engineering Biochemical Cues to Induce ESC Differentiation -- 2.2.2.1 Genetic Engineering -- 2.2.2.2 Immobilized Growth Factors -- 2.2.2.3 Coculture -- 2.2.2.4 Synthetic Small Molecules -- 2.2.3 Controlling ESC Fate in 3D Microenvironment -- 2.2.3.1 Hydrogel -- 2.2.3.2 Engineered Tissue Scaffold -- 2.2.3.3 Decellularized Scaffold -- 2.3 Conclusion and Perspectives -- References -- Chapter 3: Human Amniotic Membrane: A Potential Tissue and Cell Source for Cell Therapy and Regenerative Medicine -- 3.1 Mesenchymal Stem Cell Concept -- 3.2 Human Amniotic Membrane or Amnion -- 3.3 Localization of Human Amniotic Membrane-Derived Cells -- 3.4 Human Amniotic Membrane as a Source of Stem Cells -- 3.5 Differentiation Potential of Human Amniotic Membrane-Derived Cells -- 3.6 Preclinical Studies of Amnion-Derived Cells Applications. , 3.7 Clinical Application of Human Amniotic Membrane as Scaffold -- 3.8 Summary -- References -- Chapter 4: Novel Strategies Applied to Provide Multiple Sources of Stem Cells as a Regenerative Therapy for Parkinson's Disease -- 4.1 Introduction -- 4.2 Stem Cell Therapy -- 4.2.1 Mouse Embryonic Stem Cells (ESCs) -- 4.2.2 Human ESCs -- 4.2.3 Adult NSCs -- 4.2.4 Induced Pluripotent Stem Cells (iPSCs) -- 4.2.5 Mesenchymal Stem Cells (MSCs) -- References -- Chapter 5: Hair Follicle: A Novel Source of Stem Cells for Cell and Gene Therapy -- 5.1 Introduction -- 5.2 Hair Follicle Biology -- 5.3 Location and Differentiation Potential of Hair Follicle Stem Cells -- 5.3.1 Bulge and Hair Germ -- 5.3.2 Isthmus/Infundibulum -- 5.3.3 Sebaceous Gland -- 5.3.4 Dermal Papilla and Dermal Sheath -- 5.4 Putative Hair Follicle Stem Cell Markers -- 5.4.1 Murine Hair Follicles -- 5.4.1.1 Bulge -- 5.4.1.2 Upper Bulge -- 5.4.1.3 Dermal Papilla and Dermal Sheath -- 5.4.2 Human Hair Follicles -- 5.5 Methods for Isolating Hair Follicle Stem Cells -- 5.5.1 Microdissection -- 5.5.2 Enzymatic Digestion -- 5.5.3 Fluorescence-Activated Cell Sorting -- 5.6 Hair Follicle Stem Cells for Tissue Engineering and Cell Therapy -- 5.6.1 Tissue-Engineered Vascular Grafts -- 5.6.2 Tissue Engineering of Cartilage, Bone, and Fat -- 5.6.3 Skin Regeneration -- 5.6.4 Nerve Regeneration -- 5.6.5 Engineering Functional Hair Follicle -- 5.6.6 Drug Delivery Through the Hair Follicle -- 5.6.7 Cell and Gene Therapy Using Hair Follicle Stem Cells -- 5.6.8 Reprogramming of Hair Follicle Stem Cells -- 5.7 Conclusions: Future Directions -- References -- Chapter 6: Genetically Modified Stem Cells for Transplantation -- 6.1 Critical Challenges of Stem Cell Therapy -- 6.1.1 Types of Stem Cells -- 6.1.2 Potential of Stem Cells -- 6.1.3 Induced Pluripotent Stem Cells. , 6.2 Current Research on Gene Modification of Stem Cells -- 6.2.1 Transgenics -- 6.2.2 Cre/lox P System -- 6.2.3 Antisense Inhibition -- 6.2.4 siRNA Gene Silencing -- 6.2.5 microRNA -- 6.2.6 Reporter Genes -- 6.2.7 Cell-Specific Promoters -- 6.2.8 Gene Switches -- 6.3 The Application of Genetic Modification of Stem Cells -- 6.3.1 Cardiology and Blood -- 6.3.1.1 Increase Graft Cell Survival -- 6.3.1.2 Increase Angiogenesis in Ischemic Heart Disease -- 6.3.1.3 Gene-Modified Stem Cells to Treat Hemophilia -- 6.3.2 Gene-Modified Stem Cells to Replenish b Cells for Treating Diabetes -- 6.3.3 Gene-Modified Stem Cells to Treat Spinal Cord Injury -- 6.3.4 Gene-Modified Stem Cells for Stroke -- 6.3.5 Gene-Modified Stem Cells for Parkinson's Disease -- 6.3.6 Gene-Modified Stem Cells to Treat Alzheimer's Disease -- 6.3.7 Gene-Modified Stem Cells to Treat Bone Defect Disease -- 6.3.8 Gene-Modified Stem Cells to Treat Cancer -- References -- Chapter 7: Induced Pluripotent Stem Cells: Basics and the Application in Disease Model and Regenerative Medicine -- 7.1 Introduction -- 7.2 Comparison Between ES Cells and iPS Cells -- 7.2.1 Morphology -- 7.2.2 Gene-Expression Patterns -- 7.2.3 Telomerase Activity -- 7.2.4 Capacity of Forming Embryonic Body -- 7.2.5 Teratoma Formation -- 7.2.6 Tetraploid Complementation Assay -- 7.3 Applications of iPS Cells in Human Disease Models -- 7.3.1 Spinal Muscular Atrophy -- 7.3.2 Rett Syndrome -- 7.3.3 Familial Dysautonomia -- 7.3.4 Alzheimer's Disease -- 7.3.5 Parkinson's Disease -- 7.3.6 Hutchinson-Gilford Progeria Syndrome -- 7.4 Shortcut Approach to Generate Interested Somatic Cell Types for Modeling Human Diseases -- 7.5 Applications of iPS Cells in Gene Therapy and Cell-Based Therapy -- 7.5.1 Sickle Cell Disease -- 7.5.2 b -Thalassemia -- 7.5.3 Type I Diabetes. , 7.6 Auditor Hair Cell Regeneration Through the iPS-Cell-Based Approach -- 7.6.1 Histology of Mouse Cochlea -- 7.6.2 Development of Mouse Cochlea -- 7.6.3 Auditory HC Regeneration in Nonmammalian Vertebrates Versus Mammals -- 7.6.4 iPS Cells Can Differentiate into New HCs In Vitro -- 7.6.5 Challenges of Auditory HC Regeneration Using iPS Cells In Vivo -- 7.7 Summary -- References -- Chapter 8: Gene Transfer to the Heart: Emerging Strategies for the Selection of Vectors, Delivery Techniques, and Therapeutic Targets -- 8.1 Introduction -- 8.2 Strategies for Genetic Manipulation of the Cardiovascular System -- 8.2.1 Overexpression of Target Gene -- 8.2.2 Specific Gene Blockade -- 8.2.2.1 Antisense Oligodeoxynucleotides (ODN) -- 8.2.2.2 Decoy-Based Gene Therapy -- 8.2.2.3 Short Interfering RNA (siRNA) -- 8.2.2.4 Ribozymes -- 8.3 Cardiac Gene Delivery Vectors -- 8.3.1 Nonviral Vectors -- 8.3.2 Viral Vectors -- 8.3.2.1 Lentiviruses -- 8.3.2.2 Adenoviruses -- 8.3.2.3 Adeno-Associated Viruses -- AAV Endocytosis and Intracellular Trafficking -- Challenges -- 8.4 Gene Delivery Techniques -- 8.4.1 Direct Gene Delivery -- 8.4.1.1 Intramyocardial Delivery -- 8.4.1.2 Intrapericardial Delivery -- 8.4.2 Transvascular Gene Delivery -- 8.4.2.1 Antegrade Intracoronary Gene Delivery -- 8.4.2.2 Retrograde Intracoronary Sinus Gene Delivery -- 8.4.2.3 Transvascular Intracoronary Wall Delivery -- 8.4.2.4 Ex Vivo Gene Delivery -- 8.4.2.5 Cardiopulmonary Bypass-Based Gene Delivery -- 8.4.3 Physical Methods for Enhancement Gene Transfer -- 8.4.3.1 Sonoporation -- 8.4.3.2 Electroporation -- 8.4.3.3 Magnetic Field-Enhanced Transfection (Magnetofection) -- 8.4.4 Guidance Systems to Identify Targeted Area -- 8.4.4.1 X-Ray Fluoroscopy -- 8.4.4.2 Real-Time MRI -- 8.4.4.3 Electromechanical Mapping -- 8.4.4.4 Echocardiography Guidance -- Challenges. , 8.5 Cardiac Gene Therapy Molecular Targets -- 8.5.1 Heart Failure -- 8.5.1.1 The Calcium Cycling Proteins -- SERCA2a -- S100A1 -- Phospholamban (PLN) -- 8.5.1.2 The b -Adrenergic Signaling Cascade -- b ARKct -- 8.5.2 Ischemic Heart Disease -- 8.5.2.1 Stimulation of Cardiac Angiogenesis -- VEGF -- Fibroblast Growth Factor (FGF) -- 8.5.3 Cardiac Arrhythmias -- 8.5.4 Congenital Diseases -- 8.5.4.1 Challenges -- 8.6 Conclusion -- References -- Chapter 9: Cell-Based Therapy for Cardiovascular Injury -- 9.1 Introduction -- 9.2 Injection Therapy of Dissociated Cells -- 9.2.1 Skeletal Myoblasts -- 9.2.2 Cardiac Stem Cells -- 9.2.3 Bone Marrow- and Peripheral Blood-Derived Cells -- 9.3 Tissue Engineering -- 9.3.1 Scaffold-Based Tissue Engineering -- 9.3.2 Cell Sheet-Based Tissue Engineering -- 9.3.2.1 Temperature-Responsive Culture Surface -- 9.3.2.2 Skeletal Myoblast Sheet -- 9.3.2.3 Adult Stem/Progenitor Cell Sheets -- 9.3.3 Pulsatile 3D Cardiac Tissue -- 9.3.3.1 Fabrication of Cardiac Tissue Using Tissue Engineering -- 9.3.3.2 Human Cell Sources of Beating Cardiomyocytes -- 9.4 Challenging Trials: From Tissue Engineering to Organ Engineering -- 9.5 Conclusions -- References -- Chapter 10: Induced Pluripotent Stem Cells: New Advances in Cardiac Regenerative Medicine -- 10.1 Introduction -- 10.2 Potential and Challenges of iPS Cells: Comparison with ESC -- 10.3 Methods Used to Generate iPS -- 10.3.1 Methods Used to Generate iPS: Donor Cells -- 10.3.2 Methods Used to Generate iPS: Vectors -- 10.4 Tumor Formation -- 10.5 Differentiation to Cardiomyocytes -- 10.6 Methods Used to Differentiate iPS Cells -- 10.6.1 Methods Used to Differentiate iPS Cells: EB -- 10.6.2 Methods Used to Differentiate iPS Cells: Techniques Used for Cardiomyocyte Isolation -- 10.7 Application of iPS Cells in Cardiac Regenerative Medicine. , 10.8 Application of iPS Cells in the Genetic Analysis of Cardiac Disease.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...