GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2017
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 372, No. 1724 ( 2017-07-05), p. 20160333-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 372, No. 1724 ( 2017-07-05), p. 20160333-
    Abstract: While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2023
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 378, No. 1884 ( 2023-08-28)
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 378, No. 1884 ( 2023-08-28)
    Abstract: Innovations in nest design are thought to be one potential factor in the evolutionary success of passerine birds (order: Passeriformes), which colonized new ecological niches as they diversified in the Oligocene and Miocene. In particular, tyrant flycatchers and their allies (parvorder: Tyrannida) are an extremely diverse group of New World suboscine passerines occupying a wide range of habitats and exhibiting substantial extant variation in nest design. To explore the evolution of nest architecture in this clade, we first described nest traits across the Tyrannida phylogeny and estimated ancestral nest conditions. We then quantified macroevolutionary transition rates between nest types, examined a potential coevolutionary relationship between nest type and habitat, and used phylogenetic mixed models to determine possible ecological and environmental correlates of nest design. The Tyrannida ancestor probably built a cup nest in a closed habitat, and dome nests independently evolved at least 15 times within this group. Both cup- and dome-nesting species diversified into semi-open and open habitats, and we did not detect a coevolutionary relationship between nest type and habitat. Furthermore, nest type was not significantly correlated with several key ecological, life-history and environmental traits, suggesting that broad variation in Tyrannida nest architecture may not easily be explained by a single factor. This article is part of the theme issue ‘The evolutionary ecology of nests: a cross-taxon approach’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2019
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 374, No. 1769 ( 2019-04), p. 20180197-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 374, No. 1769 ( 2019-04), p. 20180197-
    Abstract: Despite a recent explosion of research on pattern recognition, in both neuroscience and computer vision, we lack a basic understanding of how most animals perceive and respond to patterns in the wild. Avian brood parasites and their hosts provide an ideal study system for investigating the mechanisms of pattern recognition. The cuckoo finch, Anomalospiza imberbis , and its host the tawny-flanked prinia, Prinia subflava , lay highly polymorphic eggs with a great deal of variation in colour and patterning, with the cuckoo finch capable of close egg mimicry. Behavioural experiments in Zambia have previously shown that prinias use colour and multiple ‘low-level’ (occurring in early stages of visual processing) pattern attributes, derived from spatial frequency analysis, when rejecting foreign eggs. Here, we explore the extent to which host birds might also use ‘higher-level’ pattern attributes, derived from a feature detection algorithm, to make rejection decisions. Using a SIFT-based pattern recognition algorithm, N ature P attern M atch , we show that hosts are more likely to reject a foreign egg if its higher-level pattern features—which capture information about the shape and orientation of markings—differ from those of the host eggs. A revised statistical model explains about 37% variance in egg rejection behaviour, and differences in colour, low-level and higher-level pattern features all predict rejection, accounting for 42, 44 and 14% of the explained variance, respectively. Thus, higher-level pattern features provide a small but measurable improvement to the original model and may be especially useful when colour and low-level pattern features provide hosts with little information. Understanding the relative importance of low- and higher-level pattern features is a valuable goal for future work on animal coloration, especially in the contexts of mimicry, camouflage and individual recognition. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2019
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    The Royal Society ; 2017
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 372, No. 1724 ( 2017-07-05), p. 20160339-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 372, No. 1724 ( 2017-07-05), p. 20160339-
    Abstract: The coevolutionary interactions between avian brood parasites and their hosts provide a powerful system for investigating the diversity of animal coloration. Specifically, reciprocal selection pressure applied by hosts and brood parasites can give rise to novel forms and functions of animal coloration, which largely differ from those that arise when selection is imposed by predators or mates. In the study of animal colours, avian brood parasite–host dynamics therefore invite special consideration. Rapid advances across disciplines have paved the way for an integrative study of colour and vision in brood parasite–host systems. We now know that visually driven host defences and host life history have selected for a suite of phenotypic adaptations in parasites, including mimicry, crypsis and supernormal stimuli. This sometimes leads to vision-based host counter-adaptations and increased parasite trickery. Here, we review vision-based adaptations that arise in parasite–host interactions, emphasizing that these adaptations can be visual/sensory, cognitive or phenotypic in nature. We highlight recent breakthroughs in chemistry, genomics, neuroscience and computer vision, and we conclude by identifying important future directions. Moving forward, it will be essential to identify the genetic and neural bases of adaptation and to compare vision-based adaptations to those arising in other sensory modalities. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Royal Society ; 2010
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 277, No. 1686 ( 2010-05-07), p. 1387-1393
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 277, No. 1686 ( 2010-05-07), p. 1387-1393
    Abstract: Cuckoo–host interactions provide classical examples of coevolution. Cuckoos place hosts under selection to detect and reject foreign eggs, while host defences result in the evolution of host-egg mimicry in cuckoos. Despite a long history of research, egg pattern mimicry has never been objectively quantified, and so its coevolution with host defences has not been properly assessed. Here, we use digital image analysis and modelling of avian vision to quantify the level of pattern mimicry in eight host species of the common cuckoo Cuculus canorus and their respective cuckoo host-races. We measure a range of pattern attributes, including marking size, diversity in size, contrast, coverage and dispersion. This new technique reveals hitherto unnoticed sophistication in egg pattern mimicry. We show that various features of host egg pattern are mimicked by the eggs of their respective cuckoo host-races, and that cuckoos have evolved better pattern mimicry for host species that exhibit stronger egg rejection. Pattern differs relatively more between eggs of different host species than between their respective cuckoo host-races. We suggest that cuckoos may have more ‘average’ markings in order to be able to use subsidiary hosts. Our study sheds new light on cuckoo–host coevolution and illustrates a new technique for quantifying animal markings with respect to the relevant animal visual system.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2010
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The Royal Society ; 2012
    In:  Journal of The Royal Society Interface Vol. 9, No. 77 ( 2012-12-07), p. 3338-3350
    In: Journal of The Royal Society Interface, The Royal Society, Vol. 9, No. 77 ( 2012-12-07), p. 3338-3350
    Abstract: Light absorption by carotenoids is known to vary substantially with the shape or conformation of the pigment molecule induced by the molecular environment, but the role of interactions between carotenoid pigments and the proteins to which they are bound, and the resulting impact on organismal coloration, remain unclear. Here, we present a spectroscopic investigation of feathers from the brilliant red scarlet ibis ( Eudocimus ruber, Threskiornithidae), the orange-red summer tanager ( Piranga rubra, Cardinalidae) and the violet-purple feathers of the white-browed purpletuft ( Iodopleura isabellae, Tityridae). Despite their striking differences in colour, all three of these feathers contain canthaxanthin (β,β-carotene-4,4′-dione) as their primary pigment. Reflectance and resonance Raman (rR) spectroscopy were used to investigate the induced molecular structural changes and carotenoid–protein interactions responsible for the different coloration in these plumage samples. The results demonstrate a significant variation between species in the peak frequency of the strong ethylenic vibration ( ν 1 ) peak in the rR spectra, the most significant of which is found in I. isabellae feathers and is correlated with a red-shift in canthaxanthin absorption that results in violet reflectance. Neither polarizability of the protein environment nor planarization of the molecule upon binding can entirely account for the full extent of the colour shift. Therefore, we suggest that head-to-tail molecular alignment (i.e. J-aggregation) of the protein-bound carotenoid molecules is an additional factor.
    Type of Medium: Online Resource
    ISSN: 1742-5689 , 1742-5662
    Language: English
    Publisher: The Royal Society
    Publication Date: 2012
    detail.hit.zdb_id: 2156283-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    The Royal Society ; 2019
    In:  Interface Focus Vol. 9, No. 1 ( 2019-02-06), p. 20180053-
    In: Interface Focus, The Royal Society, Vol. 9, No. 1 ( 2019-02-06), p. 20180053-
    Abstract: The use of artificially coloured stimuli, especially to test hypotheses about sexual selection and anti-predator defence, has been common in behavioural ecology since the pioneering work of Tinbergen. To investigate the effects of colour on animal behaviour, many researchers use paints, markers and dyes to modify existing colours or to add colour to synthetic models. Because colour perception varies widely across species, it is critical to account for the signal receiver's vision when performing colour manipulations. To explore this, we applied 26 typical coloration products to different types of avian feathers. Next, we measured the artificially coloured feathers using two complementary techniques—spectrophotometry and digital ultraviolet--visible photography—and modelled their appearance to mammalian dichromats (ferret, dog), trichromats (honeybee, human) and avian tetrachromats (hummingbird, blue tit). Overall, artificial colours can have dramatic and sometimes unexpected effects on the reflectance properties of feathers, often differing based on feather type. The degree to which an artificial colour differs from the original colour greatly depends on an animal's visual system. ‘White’ paint to a human is not ‘white’ to a honeybee or blue tit. Based on our analysis, we offer practical guidelines for reducing the risk of introducing unintended effects when using artificial colours in behavioural experiments.
    Type of Medium: Online Resource
    ISSN: 2042-8898 , 2042-8901
    Language: English
    Publisher: The Royal Society
    Publication Date: 2019
    detail.hit.zdb_id: 2585655-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Royal Society ; 2017
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 372, No. 1724 ( 2017-07-05), p. 20170047-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 372, No. 1724 ( 2017-07-05), p. 20170047-
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The Royal Society ; 2023
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 378, No. 1884 ( 2023-08-28)
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 378, No. 1884 ( 2023-08-28)
    Abstract: Nests, including the enormous structures housing colonies of eusocial insects and the elaborately built nests of some fishes, have long fascinated scientists, yet our understanding of the evolutionary ecology of nests has lagged behind our understanding of subsequent reproductive stages. There has, however, been a burgeoning amount of interest in nests over the past decade, and this special issue on ‘The evolutionary ecology of nests: a cross-taxon approach' outlines our understanding of the form and function of nests in diverse animal lineages. Papers in ‘The function of nests: mechanisms and adaptive benefits' theme examine the various functions of nests, while papers in ‘The evolution of nest characteristics' theme examine the evolution of nesting behaviours. Meanwhile, papers in the ‘Large communal nests in harsh environments' theme examine how the enormous structures constructed by eusocial insects and social birds enable them to inhabit harsh arid environments, whereas papers in the ‘Nests in the Anthropocene' theme examine how adaptive shifts in nest architecture allow animals to adapt to breed in the age of accelerating global human impacts. Finally, the synthesis outlines how the mixture of ideas and approaches from researchers studying different taxa will advance our understanding of this exciting field of research. This article is part of the theme issue ‘The evolutionary ecology of nests: a cross-taxon approach’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2023
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...