GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-02
    Description: Improvement of glucose metabolism after bariatric surgery appears to be from the composite effect of the alterations in multiple circulating gut hormone concentrations. However, their individual effect on glucose metabolism during different conditions is not clear. The objective of this study was to determine whether ghrelin has an impact on glycogenolysis, gluconeogenesis, and insulin sensitivity (using a mice model). Rate of appearance of glucose, glycogenolysis, and gluconeogenesis were measured in wild-type (WT), ghrelin knockout (ghrelin –/– ), and growth hormone secretagogue receptor knockout (Ghsr –/– ) mice in the postabsorptive state. The physiological nature of the fasting condition was ascertained by a short-term fast commenced immediately at the end of the dark cycle. Concentrations of glucose and insulin were measured, and insulin resistance and hepatic insulin sensitivity were calculated. Glucose concentrations were not different among the groups during the food-deprived period. However, plasma insulin concentrations were lower in the ghrelin –/– and Ghsr –/– than WT mice. The rates of gluconeogenesis, glycogenolysis, and indexes of insulin sensitivity were higher in the ghrelin –/– and Ghsr –/– than WT mice during the postabsorptive state. Insulin receptor substrate 1 and glucose transporter 2 gene expressions in hepatic tissues of the ghrelin –/– and Ghsr –/– were higher compared with that in WT mice. This study demonstrates that gluconeogenesis and glycogenolysis are increased and insulin sensitivity is improved by the ablation of the ghrelin or growth hormone secretagogue receptor in mice.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-03
    Description: Adiponectin (APN) is a cardioprotective molecule. Its reduction in diabetes exacerbates myocardial ischemia/reperfusion (MI/R) injury. Although APN administration in animals attenuates MI/R injury, multiple factors limit its clinical application. The current study investigated whether AdipoRon, the first orally active molecule that binds APN receptors, may protect the heart against MI/R injury, and if so, to delineate the involved mechanisms. Wild-type (WT), APN knockout (APN-KO), and cardiomyocyte specific-AMPK dominant negative (AMPK-DN) mice were treated with vehicle or AdipoRon (50 mg/kg, 10 min prior to MI) and subjected to MI/R (30 min/3–24 h). Compared with vehicle, oral administration of AdipoRon to WT mice significantly improved cardiac function and attenuated postischemic cardiomyocyte apoptosis, determined by DNA ladder formation, TUNEL staining, and caspase-3 activation (all P 〈 0.01). MI/R-induced apoptotic cell death was significantly enhanced in mice deficient in either APN (APN-KO) or AMPK (AMPK-DN). In APN-KO mice, AdipoRon attenuated MI/R injury to the same degree as observed in WT mice. In AMPK-DN mice, AdipoRon's antiapoptotic action was partially inhibited but not lost. Finally, AdipoRon significantly attenuated postischemic oxidative stress, as evidenced by reduced NADPH oxidase expression and superoxide production. Collectively, these results demonstrate for the first time that AdipoRon, an orally active APN receptor activator, effectively attenuated postischemic cardiac injury, supporting APN receptor agonists as a promising novel therapeutic approach treating cardiovascular complications caused by obesity-related disorders such as type 2 diabetes.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-16
    Description: Recent clinical observations demonstrate adiponectin (APN), an adipocytokine with potent cardioprotective actions, is significantly reduced following myocardial ischemia/reperfusion (MI/R). However, mechanisms responsible for MI/R-induced hypoadiponectinemia remain incompletely understood. Adult male mice were subjected to 30-min MI followed by varying reperfusion periods. Adipocyte APN mRNA and protein expression and plasma APN and TNFα concentrations were determined. APN expression/production began to decline 3 h after reperfusion (reaching nadir 12 h after reperfusion), returning to control levels 7 days after reperfusion. Plasma TNFα levels began to increase 1 h after reperfusion, peaking at 3 h and returning to control levels 24 h after reperfusion. TNFα knockout significantly increased plasma APN levels 12 h after reperfusion but failed to improve APN expression/production 72 h after reperfusion. In contrast, TNF receptor-1 (TNFR1) knockout significantly restored APN expression 12 and 72 h after reperfusion, suggesting that other TNFR1 binding cytokines contribute to MI/R-induced APN suppression. Among many cytokines increased after MI/R, lymphotoxin-α (LTα) was the only cytokine remaining elevated 24–72 h after reperfusion. LTα knockout did not augment APN levels 12 h post-reperfusion, but did so by 72 h. Finally, in vitro treatment of adipocytes with TNFα and LTα at concentrations seen in MI/R plasma additively inhibited APN expression/production in TNFR1-dependent fashion. Our study demonstrates for the first time that LTα is a novel suppressor of APN expression and contributes to the sustained hypoadiponectinemia following MI/R. Combining anti-TNFα with anti-LTα strategies may achieve the best effects restoring APN in MI/R patients.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-16
    Description: The cardioprotective effects of adiponectin (APN) against myocardial ischemia/reperfusion (MI/R) injury are well known. However, comprehension of the mechanisms mediating intracellular APN signaling remains incomplete. We recently demonstrate the antioxidant/antinitrative effects of APN are not dependent on AMPK. Protein kinase A (PKA) has been previously shown to be activated by APN, with uncertain relevance to APN cardiac protection. The current study determined whether the antioxidative/antinitrative effect of APN is mediated by PKA. Administration of APN (2 μg/g) 10 min before reperfusion significantly enhanced cardiac PKA activity, reduced oxidative stress, and decreased infarct size. Knockdown of cardiac PKA expression (PKA-KD) by intramyocardial injection of PKA-siRNAs (〉70% suppression) significantly inhibited APN cardioprotection determined by cardiac apoptosis, infarct size, and cardiac function. Moreover, PKA-KD virtually abolished the suppressive effect of APN on MI/R-induced NADPH oxidase overexpression and superoxide overproduction and partially inhibited the effect of APN on nitrative protein modification in MI/R heart. Mechanistically, APN significantly inhibited MI/R-induced IKK/IB phosphorylation and NF-B activation, which were blocked in PKA-KD heart. Finally, the PKA-mediated antioxidant/antinitrative and cardioprotective effects of APN are intact in AMPK-deficient mice, suggesting that there is no cross talk between AMPK and PKA signaling in APN cardioprotection. Collectively, we demonstrate for the first time that APN inhibits oxidative/nitrative stress during MI/R via PKA-dependent NF-B inhibition.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-04
    Description: Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic β-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 ( MEN1 ) gene, which encodes the protein menin, increases β-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of β-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce β-cell proliferation.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-10
    Description: Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-B and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-10
    Description: MicroRNA-125a-5p (miR-125a-5p) could participate in the pathogenesis of vascular diseases. In this study, we investigated the role of miR-125a-5p in oxidized low-density lipoprotein (ox-LDL)-induced functional changes in human brain microvessel endothelial cells (HBMEC). The reactive oxygen species (ROS) production, nitric oxide (NO) generation, senescence, apoptosis, and functions of HBMEC were analyzed. For mechanism study, the epidermal growth factor receptor (EGFR)/extracellular signal-regulated protein kinase (ERK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway and phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase (Akt)/endothelial nitric oxide synthase (eNOS) pathway were analyzed. Results showed the following: 1 ) Expression of miR-125a-5p was reduced in ox-LDL-treated HBMEC. 2 ) Overexpression of miR-125a-5p protected HBMEC from ox-LDL-induced apoptosis, senescence, ROS production, and NO reduction. 3 ) Overexpression of miR-125a-5p increased HBMEC proliferation, migration, and tube formation, while decreasing HBMEC adhesion to leukocytes, as well as counteracting the effects of ox-LDL on those functions. 4 ) The levels of EGFR/ERK/p38 MAPK pathway, PI3K/Akt/eNOS pathway, cleaved caspase-3, and adherent molecular ICAM-1 and VCAM-1 were associated with the effects of ox-LDL on these HBMEC functions. In conclusion, miR-125a-5p could counteract the effects of ox-LDL on various HBMEC functions via regulating the EGFR/ERK/p38 MAPK and PI3K/Akt/eNOS pathways and cleaved caspase-3, ICAM-1, and VCAM-1 expression.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-01-16
    Description: Hepatic triglyceride (TG) accumulation is considered to be a prerequisite for developing nonalcoholic fatty liver (NAFL). Peroxisomes have many important functions in lipid metabolism, including fatty acid β-oxidization. However, the pathogenic link between NAFL and peroxisome biogenesis remains unclear. To examine the molecular and physiological functions of the Pex11α gene, we disrupted this gene in mice. Body weights and hepatic TG concentrations in Pex11α –/– mice were significantly higher than those in wild-type (WT) mice fed a normal or a high-fat diet. Hepatic TG concentrations in fasted Pex11α –/– mice were significantly higher than those in fasted WT mice. Plasma TG levels increased at lower rates in Pex11α –/– mice than in WT mice after treatment with the lipoprotein lipase inhibitor tyloxapol. The number of peroxisomes was lower in the livers of Pex11α –/– mice than in those of WT mice. Ultrastructural analysis showed that small and regular spherically shaped peroxisomes were more prevalent in Pex11α –/– mice fed normal chow supplemented without or with fenofibrate. We observed a significantly higher ratio of empty peroxisomes containing only PMP70, a peroxisome membrane protein, but not catalase, a peroxisome matrix protein, in Pex11α –/– mice. The mRNA expression levels of peroxisomal fatty acid oxidation-related genes (ATP-binding cassette, subfamily D, member 2, and acyl-CoA thioesterase 3) were significantly higher in WT mice than those in Pex11α –/– mice under fed conditions. Our results demonstrate that Pex11α deficiency impairs peroxisome elongation and abundance and peroxisomal fatty acid oxidation, which contributes to increased lipid accumulation in the liver.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-16
    Description: The P2X 7 receptor is a ligand-gated ion channel, and genetic variations in the P2X 7 gene significantly affect blood pressure. P2X 7 receptor expression is associated with renal injury and inflammatory diseases. Uninephrectomized wild-type (WT) and P2X 7 -deficient (P2X 7 KO) mice were subcutaneously implanted with deoxycorticosterone acetate (DOCA) pellets and fed an 8% salt diet for 18 days. Their blood pressure was assessed by a telemetry system. The mice were placed in metabolic cages, and urine was collected for 24 h to assess renal function. After 18 days of DOCA-salt treatment, P2X 7 mRNA and protein expression increased in WT mice. Blood pressure in P2X 7 KO mice was less than that of WT mice (mean systolic blood pressure 133 ± 3 vs. 150 ± 2 mmHg). On day 18 , urinary albumin excretion was lower in P2X 7 KO mice than in WT mice (0.11 ± 0.07 vs. 0.28 ± 0.07 mg/day). Creatinine clearance was higher in P2X 7 KO mice than in WT mice (551.53 ± 65.23 vs. 390.85 ± 32.81 μl·min –1 ·g renal weight –1 ). Moreover, renal interstitial fibrosis and infiltration of immune cells (macrophages, T cells, B cells, and leukocytes) were markedly attenuated in P2X 7 KO mice compared with WT mice. The levels of IL-1β, released by macrophages, in P2X 7 KO mice had decreased dramatically compared with that in WT mice. These results strongly suggest that the P2X 7 receptor plays a key role in the development of hypertension and renal disease via increased inflammation, indicating its potential as a novel therapeutic target.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-16
    Description: Hydrogen peroxide (H 2 O 2 ) causes cell damage via oxidative stress. Heme oxygenase-1 (HO-1) is an antioxidant enzyme that can protect cardiomyocytes against oxidative stress. In this study, we investigated whether the heme precursor 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC) could protect cardiomyocytes from H 2 O 2 -induced hypertrophy via modulation of HO-1 expression. HL-1 cells pretreated with/without 5-ALA and SFC were exposed to H 2 O 2 to induce a cardiomyocyte hypertrophy model. Hypertrophy was evaluated by planar morphometry, 3 H-leucine incorporation, and RT-PCR analysis of hypertrophy-related gene expressions. Reactive oxygen species (ROS) production was assessed by 5/6-chloromethyl-2',7'-ichlorodihydrofluorescein diacetate acetylester. HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) protein expressions were analyzed by Western blot. In our experiments, HL-1 cells were transfected with Nrf2 siRNA or treated with a signal pathway inhibitor. We found several results. 1 ) ROS production, cell surface area, protein synthesis, and expressions of hypertrophic marker genes, including atrial natriuretic peptide, brain natriuretic peptide, atrial natriuretic factor, and β-myosin heavy chain, were decreased in HL-1 cells pretreated with 5-ALA and SFC. 2 ) 5-ALA and SFC increased HO-1 expression in a dose- and time-dependent manner, associated with upregulation of Nrf2. Notably, Nrf2 siRNA dramatically reduced HO-1 expression in HL-1 cells. 3 ) ERK1/2, p38, and SAPK/JNK signaling pathways were activated and modulate 5-ALA- and SFC-enhanced HO-1 expression. SB203580 (p38 kinase), PD98059 (ERK), or SP600125 (JNK) inhibitors significantly reduced this effect. In conclusion, our data suggest that 5-ALA and SFC protect HL-1 cells from H 2 O 2 -induced cardiac hypertrophy via activation of the MAPK/Nrf2/HO-1 signaling pathway.
    Print ISSN: 0363-6143
    Electronic ISSN: 1522-1563
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...