GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-03
    Description: HER2/HER3 dimerization resulting from overexpression of HER2 or neuregulin (NRG1) in cancer leads to HER3-mediated oncogenic activation of phosphoinositide 3-kinase (PI3K) signaling. Although ligand-blocking HER3 antibodies inhibit NRG1-driven tumor growth, they are ineffective against HER2-driven tumor growth because HER2 activates HER3 in a ligand-independent manner. In this study, we describe a novel HER3 monoclonal antibody (LJM716) that can neutralize multiple modes of HER3 activation, making it a superior candidate for clinical translation as a therapeutic candidate. LJM716 was a potent inhibitor of HER3/AKT phosphorylation and proliferation in HER2-amplified and NRG1-expressing cancer cells, and it displayed single-agent efficacy in tumor xenograft models. Combining LJM716 with agents that target HER2 or EGFR produced synergistic antitumor activity in vitro and in vivo. In particular, combining LJM716 with trastuzumab produced a more potent inhibition of signaling and cell proliferation than trastuzumab/pertuzumab combinations with similar activity in vivo. To elucidate its mechanism of action, we solved the structure of LJM716 bound to HER3, finding that LJM716 bound to an epitope, within domains 2 and 4, that traps HER3 in an inactive conformation. Taken together, our findings establish that LJM716 possesses a novel mechanism of action that, in combination with HER2- or EGFR-targeted agents, may leverage their clinical efficacy in ErbB-driven cancers. Cancer Res; 73(19); 6024–35. ©2013 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-15
    Description: Purpose: Antiangiogenic therapy reduces vascular permeability and delays progression but may ultimately promote an aggressive treatment-resistant phenotype. The aim of the present study was to identify mechanisms responsible for glioblastoma resistance to antiangiogenic therapy. Experimental Design: Glioma stem cell (GSC) NSC11 and U87 cell lines with acquired resistance to bevacizumab were developed from orthotopic xenografts in nude mice treated with bevacizumab. Genome-wide analyses were used to identify changes in tumor subtype and specific factors associated with resistance. Results: Mice with established parental NSC11 and U87 cells responded to bevacizumab, whereas glioma cell lines derived at the time of acquired resistance to anti-VEGF therapy were resistant to bevacizumab and did not have prolongation of survival compared with untreated controls. Gene expression profiling comparing anti-VEGF therapy-resistant cell lines to untreated controls showed an increase in genes associated with a mesenchymal origin, cellular migration/invasion, and inflammation. Gene-set enrichment analysis showed that bevacizumab-treated tumors showed a highly significant correlation to published mesenchymal gene signatures. Mice bearing resistant tumors showed significantly greater infiltration of myeloid cells in NSC11- and U87-resistant tumors. Invasion-related genes were also upregulated in both NSC11 and U87 resistant cells which had higher invasion rates in vitro compared with their respective parental cell lines. Conclusions: Our studies identify multiple proinflammatory factors associated with resistance and identify a proneural to mesenchymal transition in tumors resistant to antiangiogenic therapy. Clin Cancer Res; 19(16); 4392–403. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-04
    Description: Purpose: Chemoresistance is the main cause of treatment failure in cancer and is associated with distant metastases and epithelial-to-mesenchymal transition (EMT). This study was aimed to explore the mechanism of metastases and EMT in chemoresistant gastric cancer. Experimental Design: A key molecular pathway was identified via gene profiling and a bioinformatic analysis in a chemoresistant gastric cancer model. The roles of FOXL2, HMGA2, and ITGA2 were validated via loss-of-function and gain-of-function experiments in vitro and in an orthotopic gastric cancer animal model. The regulation of FOXL2 by HMGA2 was explored via immunoprecipitation and luciferase reporter assays. The expression of these proteins in gastric cancer tissues was examined by IHC. Results: HMGA2 and FOXL2 directly regulated the metastasis and EMT of chemoresistant gastric cancer. The interaction between HMGA2 and pRb facilitated the transactivation of FOXL2 by E2F1, and ITGA2 was the downstream effector of the HMGA2–FOXL2 pathway. HMGA2, FOXL2, and ITGA2 were associated with the TNM classification and staging of gastric cancer and were increased in metastatic lymph nodes and distant metastases. Increased HMGA2, FOXL2, and ITGA2 levels were associated with reduced overall survival periods of patients with gastric cancer. Conclusions: This study demonstrated that the transactivation of FOXL2 driven by interactions between HMGA2 and pRb might exert critical effects on the metastases and EMT of chemoresistant gastric cancer. Blocking the HMGA2–FOXL2–ITGA2 pathway could serve as a new strategy for gastric cancer treatment. Clin Cancer Res; 23(13); 3461–73. ©2017 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-17
    Description: Metastasis is the major cause of poor prognosis in colorectal cancer (CRC), and increasing evidence supports the contribution of miRNAs to cancer progression. Here, we found that high expression of miR-103 and miR-107 (miR-103/107) was associated with metastasis potential of CRC cell lines and poor prognosis in patients with CRC. We showed that miR-103/107 targeted the known metastasis suppressors death-associated protein kinase (DAPK) and Krüppel-like factor 4 (KLF4) in CRC cells, resulting in increased cell motility and cell–matrix adhesion and decreased cell–cell adhesion and epithelial marker expression. miR-103/107 expression was increased in the presence of hypoxia, thereby potentiating DAPK and KLF4 downregulation and hypoxia-induced motility and invasiveness. In mouse models of CRC, miR-103/107 overexpression potentiated local invasion and liver metastasis effects, which were suppressed by reexpression of DAPK or KLF4. miR-103/107–mediated downregulation of DAPK and KLF4 also enabled the colonization of CRC cells at a metastatic site. Clinically, the signature of a miR-103/107 high, DAPK low, and KLF4 low expression profile correlated with the extent of lymph node and distant metastasis in patients with CRC and served as a prognostic marker for metastasis recurrence and poor survival. Our findings therefore indicate that miR-103/107–mediated repression of DAPK and KLF4 promotes metastasis in CRC, and this regulatory circuit may contribute in part to hypoxia-stimulated tumor metastasis. Strategies that disrupt this regulation might be developed to block CRC metastasis. Cancer Res; 72(14); 3631–41. ©2012 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    The American Association for Cancer Research (AACR)
    Publication Date: 2013-05-14
    Description: The AMP-activated protein kinase (AMPK) functions to monitor and maintain energy homeostasis at the cellular and organism level. AMPK was perceived historically primarily as a component of the LKB1/STK11 tumor suppressor (LKB1 mutations cause the Peutz-Jegher cancer predisposition syndrome) cascade upstream of the TSC1/2/mTOR pathway and thus likely to be a tumor suppressor. However, AMPK has recently been shown to promote cancer cell survival in the face of extrinsic and intrinsic stressors including bioenergetic, growth factor, and oncogene stress compatible with studies showing that AMPK is required for oncogenic transformation. Thus, whether AMPK acts as a bona fide tumor suppressor or a contextual oncogene and, of particular importance, whether AMPK should be targeted for activation or inhibition during cancer therapy, is controversial and requires clarification. We aim to initiate discussions of these critical questions by reviewing the role of AMPK with an emphasis on cancer cell adaptation to microenvironment stress and therapeutic intervention. Cancer Res; 73(10); 2929–35. ©2013 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-01
    Description: Eradicating malignant tumors by vaccine-elicited host immunity remains a major medical challenge. To date, correlates of immune protection remain unknown for malignant mesothelioma. In this study, we demonstrated that antigen-specific CD8+ T-cell immune response correlates with the elimination of malignant mesothelioma by a model PD-1–based DNA vaccine. Unlike the nonprotective tumor antigen WT1-based DNA vaccines, the model vaccine showed complete and long-lasting protection against lethal mesothelioma challenge in immunocompetent BALB/c mice. Furthermore, it remained highly immunogenic in tumor-bearing animals and led to therapeutic cure of preexisting mesothelioma. T-cell depletion and adoptive transfer experiments revealed that vaccine-elicited CD8+ T cells conferred to the protective efficacy in a dose-dependent way. Also, these CD8+ T cells functioned by releasing inflammatory IFNγ and TNFα in the vicinity of target cells as well as by initiating TRAIL-directed tumor cell apoptosis. Importantly, repeated DNA vaccinations, a major advantage over live-vectored vaccines with issues of preexisting immunity, achieve an active functional state, not only preventing the rise of exhausted PD-1+ and Tim-3+ CD8+ T cells but also suppressing tumor-induced myeloid-derived suppressive cells and Treg cells, with the frequency of antigen-specific CD8+ T cells inversely correlating with tumor mass. Our results provide new insights into quantitative and qualitative requirements of vaccine-elicited functional CD8+ T cells in cancer prevention and immunotherapy. Cancer Res; 74(21); 6010–21. ©2014 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-16
    Description: Interaction of RAGE (the receptor for advanced glycation endproducts) with its ligands can promote tumor progression, invasion, and angiogenesis. Although blocking RAGE signaling has been proposed as a potential anticancer strategy, functional contributions of RAGE expression in the tumor microenvironment (TME) have not been investigated in detail. Here, we evaluated the effect of genetic depletion of RAGE in TME on the growth of gliomas. In both invasive and noninvasive glioma models, animal survival was prolonged in RAGE knockout (Ager−/−) mice. However, the improvement in survival in Ager−/− mice was not due to changes in tumor growth rate but rather to a reduction in tumor-associated inflammation. Furthermore, RAGE ablation in the TME abrogated angiogenesis by downregulating the expression of proangiogenic factors, which prevented normal vessel formation, thereby generating a leaky vasculature. These alterations were most prominent in noninvasive gliomas, in which the expression of VEGF and proinflammatory cytokines were also lower in tumor-associated macrophages (TAM) in Ager−/− mice. Interestingly, reconstitution of Ager−/− TAM with wild-type microglia or macrophages normalized tumor vascularity. Our results establish that RAGE signaling in glioma-associated microglia and TAM drives angiogenesis, underscoring the complex role of RAGE and its ligands in gliomagenesis. Cancer Res; 74(24); 7285–97. ©2014 AACR.
    Print ISSN: 0008-5472
    Electronic ISSN: 1538-7445
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-07
    Description: Purpose: Antiangiogenic therapy is effective in blocking vascular permeability, inhibiting vascular proliferation, and slowing tumor growth, but studies in multiple cancer types have shown that tumors eventually acquire resistance to blockade of blood vessel growth. Currently, the mechanisms by which this resistance occurs are not well understood. Experimental Design: In this study, we evaluated the effects of neutrophils on glioma biology both in vitro and in vivo and determined target genes by which neutrophils promote the malignant glioma phenotype during anti-VEGF therapy. Results: We found that an increase in neutrophil infiltration into tumors is significantly correlated with glioma grade and in glioblastoma with acquired resistance to anti-VEGF therapy. Our data demonstrate that neutrophils and their condition media increased the proliferation rate of glioblastoma-initiating cells (GIC). In addition, neutrophils significantly increased GICs Transwell migration compared with controls. Consistent with this behavior, coculture with neutrophils promoted GICs to adopt morphologic and gene expression changes consistent with a mesenchymal signature. Neutrophil-promoting tumor progression could be blocked by S100A4 downregulation in vitro and in vivo . Furthermore, S100A4 depletion increased the effectiveness of anti-VEGF therapy in glioma. Conclusions: Collectively, these data suggest that increased recruitment of neutrophils during anti-VEGF therapy promotes glioma progression and may promote treatment resistance. Tumor progression with mesenchymal characteristics is partly mediated by S100A4, the expression of which is increased by neutrophil infiltration. Targeting granulocytes and S100A4 may be effective approaches to inhibit the glioma malignant phenotype and diminish antiangiogenic therapy resistance. Clin Cancer Res; 20(1); 187–98. ©2013 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-02
    Description: Purpose: RNA sequencing (RNA-seq) has recently proved to be effective for revealing novel virus–tumor associations. To get a thorough investigation of virus–glioma associations, we screened viruses in gliomas with RNA-seq data from the Chinese Glioma Genome Atlas project. Experimental Design: In total, 325 samples were enrolled into this study. Reads that failed to map to the human genome were aligned to viral genomes and screened for potential virus-derived transcripts. For quantification, VPKM was calculated according to mapped reads weighted by genome sizes and sequencing depth. Results: We observed that viruses tended to concertedly express in a certain subgroup of patients. Survival analysis revealed that individuals who were infected with Simian virus 40 (SV40) or woolly monkey sarcoma virus (WMSV) had a significantly shorter overall survival than those uninfected. A multivariate Cox proportional hazards model, taking clinical and molecular factors into account, was applied to assess the prognostic value of SV40 and WMSV. Both SV40 and WMSV were independent prognostic factors for predicting patient's survival in lower-grade gliomas. Subsequent gene analysis demonstrated that SV40 was correlated with regulation of transcription, whereas WMSV was correlated with cell-cycle phase, which indicated frequent proliferation of tumor cells. Conclusions: RNA-seq was sufficient to identify virus infection in glioma samples. SV40 and WMSV were identified to be prognostic markers for patients with lower-grade gliomas and showed potential values for targeting therapy. Clin Cancer Res; 23(9); 2177–85. ©2016 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...