GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-18
    Description: The reduction of greenhouse gas (GHG) emissions by energyintensive industries to a net zero level is a very ambitious and complex but still feasible challenge, as recent studies show for the EU level. "Industrial Transformation 2050" by Material Economics (2019) is of particular relevance, as it shows how GHG-neutrality can be achieved in Europe for the sectors chemicals (plastics and ammonia), steel and cement, based on three main decarbonisation strategies. The study determines the resulting total demands for renewable electricity, hydrogen and for the capture and storage of CO2 (CCS). However, it analyses neither the regional demand patterns that are essential for the required infrastructure nor the needed infrastructure itself. Against this background the present paper determines the regional distribution of the resulting additional demands for electricity, hydrogen and CCS in Europe in the case that the two most energy and CCS intensive decarbonisation strategies of the study above will be realised for the existing industry structure. It explores the future infrastructure needs and identifies and qualitatively assesses different infrastructure solutions for the largest industrial cluster in Europe, i.e. the triangle between Antwerp, Rotterdam and Rhine-Ruhr. In addition, the two industrial regions of Southern France and Poland are also roughly examined. The paper shows that the increase in demand resulting from a green transformation of industry will require substantial adaptation and expansion of existing infrastructures. These have not yet been the subject of infrastructure planning. In particular, the strong regional concentration of additional industrial demand in clusters (hot spots) must be taken into account. Due to their distance from the high-yield but remote renewable power generation potentials (sweet spots), these clusters further increase the infrastructural challenges. This is also true for the more dispersed cement production sites in relation to the remote CO2 storage facilities. The existing infrastructure plans should therefore be immediately expanded to include decarbonisation strategies of the industrial sector.
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: The paper describes quantitative scenarios on a possible evolution of the EU petrochemical industry towards climate neutrality. This industry will be one of the remaining sectors in a climate neutral economy still handling hydrocarbon material to manufacture polymers. Concepts of a climate neutral chemical industry stress the need to consider the potential end-of-life emissions of polymers produced from fossil feedstock and draft the vision of using renewable electricity to produce hydrogen and to use renewable (hydro)carbon feedstock. The latter could be biomass, CO2 from the air or recycled feedstock from plastic waste streams. The cost-optimization model used to develop the scenarios describes at which sites investments of industry in the production stock could take place in the future. Around 50 types of products, the related production processes and the respective sites have been collected in a database. The processes included cover the production chain from platform chemicals via intermediates to polymers. Pipelines allowing for efficient exchange of feedstock and platform chemicals between sites are taken into account as well. The model draws on this data to simulate capacity change at individual plants as well as plant utilization. Thus, a future European production network for petrochemicals with flows between the different sites and steps of the value chain can be sketched. The scenarios described in this paper reveal how an electrification strategy could be implemented by European industry over time with minimized societal costs. Today's existing assets as well as geographical variance of energy supply and the development of demand for different plastic sorts are the major model drivers. Finally, implications for the chemical industry, the energy system and national or regional governments are discussed.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...