GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (4)
Material
Publisher
  • Springer Science and Business Media LLC  (4)
Language
Years
  • 1
    In: Saline Systems, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2009-12)
    Abstract: The finding that molt-inhibiting hormone (MIH) regulates vitellogenesis in the hepatopancreas of mature Callinectes sapidus females, raised the need for the characterization of its mode of action. Using classical radioligand binding assays, we located specific, saturable, and non-cooperative binding sites for MIH in the Y-organs of juveniles (J-YO) and in the hepatopancreas of vitellogenic adult females. MIH binding to the hepatopancreas membranes had an affinity 77 times lower than that of juvenile YO membranes (K D values: 3.22 × 10 -8 and 4.19 × 10 -10 M/mg protein, respectively). The number of maximum binding sites (B MAX ) was approximately two times higher in the hepatopancreas than in the YO (B MAX values: 9.24 × 10 -9 and 4.8 × 10 -9 M/mg protein, respectively). Furthermore, MIH binding site number in the hepatopancreas was dependent on ovarian stage and was twice as high at stage 3 than at stages 2 and 1. SDS-PAGE separation of [ 125 I] MIH or [ 125 I] crustacean hyperglycemic hormone (CHH) crosslinked to the specific binding sites in the membranes of the J-YO and hepatopancreas suggests a molecular weight of ~51 kDa for a MIH receptor in both tissues and a molecular weight of ~61 kDa for a CHH receptor in the hepatopancreas. The use of an in vitro incubation of hepatopancreas fragments suggests that MIH probably utilizes cAMP as a second messenger in this tissue, as cAMP levels increased in response to MIH. Additionally, 8-Bromo-cAMP mimicked the effects of MIH on vitellogenin ( VtG ) mRNA and heterogeneous nuclear (hn) VtG RNA levels. The results imply that the functions of MIH in the regulation of molt and vitellogenesis are mediated through tissue specific receptors with different kinetics and signal transduction. MIH ability to regulate vitellogenesis is associated with the appearance of MIH specific membrane binding sites in the hepatopancreas upon pubertal/final molt.
    Type of Medium: Online Resource
    ISSN: 1746-1448
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 2196948-6
    detail.hit.zdb_id: 2655665-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2014
    In:  Scientific Reports Vol. 4, No. 1 ( 2014-01-14)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2014-01-14)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Saline Systems, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2009-12)
    Abstract: To understand the hormonal coordination of the antagonism between molting and reproduction in crustaceans, the terminally anecdysial mature female Callinectes sapidus was used as a model. The regulatory roles of crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) in vitellogenesis were examined. A competitive specific RIA was used to measure the levels of MIH and CHH in the hemolymphs of mature females at pre- and mid- vitellogenic stages, and their effects on vitellogenesis at early (early 2, E2) and mid vitellogenesis (3) stages were determined in vitro . A hepatopancreas fragments incubation system was developed and the levels of vitellogenin (VtG), as well as VtG mRNA and heterogeneous nuclear (hn)VtG RNA were determined using RIA or QPCR, respectively. MIH titers were four times higher at mid-vitellogenesis than at pre-vitellogenesis, while CHH levels in the hemolymph were constant. In the in vitro incubation experiments, MIH increased both VtG mRNA levels and secretion at ovarian stage 3. At stage E2, however, MIH resulted in a mixed response: downregulation of VtG mRNA and upregulation of hnVtG RNA. CHH had no effect on any of the parameters. Actinomycin D blocked the stimulatory effects of MIH in stage 3 animals on VtG mRNA and VtG, while cycloheximide attenuated only VtG levels, confirming the MIH stimulatory effect at this stage. MIH is a key endocrine regulator in the coordination of molting and reproduction in the mature female C. sapidus , which simultaneously inhibits molt and stimulates vitellogenesis.
    Type of Medium: Online Resource
    ISSN: 1746-1448
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 2196948-6
    detail.hit.zdb_id: 2655665-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-03-23)
    Abstract: Restricted food intake, either from lack of food sources or endogenous fasting, during reproductive periods is a widespread phenomenon across the animal kingdom. Considering previous studies show the canonical upstream regulator of reproduction in vertebrates, the hypothalamic Gonadotropin-releasing hormone (Gnrh), is inhibited in some fasting animals, we sought to understand the neuroendocrine control of reproduction in fasted states. Here, we explore the roles of the midbrain neuropeptide, Gnrh2, in inducing reproduction via its pituitary prevalence, gonadotropin synthesis, gametogenesis, and reproductive outputs in the zebrafish model undergoing different feeding regimes. We discovered a fasting-induced four-fold increase in length and abundance of Gnrh2 neuronal projections to the pituitary and in close proximity to gonadotropes, whereas the hypothalamic Gnrh3 neurons are reduced by six-fold in length. Subsequently, we analyzed the functional roles of Gnrh2 by comparing reproductive parameters of a Gnrh2-depleted model, gnrh2 −/− , to wild-type zebrafish undergoing different feeding conditions. We found that Gnrh2 depletion in fasted states compromises spawning success, with associated decreases in gonadotropin production, oogenesis, fecundity, and male courting behavior. Gnrh2 neurons do not compensate in other circumstances by which Gnrh3 is depleted, such as in gnrh3 −/− zebrafish, implying that Gnrh2 acts to induce reproduction specifically in fasted zebrafish.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...